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Abstract

Bisimulation relations and metrics are a notion of similarity between states which have

originated in the study of transition systems and which have since been extended to prob-

abilistic systems, then to Markov processes and finally Markov decision processes. In this

thesis, we first introduce a relaxation of bisimulation metrics, named the MICo distance,

which, unlike bisimulation, can be estimated through samples and we analyze its theoret-

ical properties. We study variations of it and prove convergence results related to learning

the distance through samples. We then present empirical results obtained from large-scale

experiments. We introduce a related quantity, kernel similarity metrics, which are a modi-

fication of the original bisimulation metric obtained by iterating over the space of positive

definite kernels, rather than over the space of metrics. We analyze various properties of

these distances using tools from reproducing kernel Hilbert space theory, and prove that

a distance arising from this theory is equivalent to the MICo distance introduced earlier.

Finally, we extend and formalize a framework of auxiliary Markov decision processes,

which allows us to view the original bisimulation metric and its various modifications in

a single framework.
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Abrégé

Les relations et les métriques de bisimulation sont une notion de similarité entre états qui

trouve son origine dans l’étude des processus de Markov étiquetés, qui ont été étendues

aux processus de décision de Markov. Dans cette thèse, nous introduisons d’abord une re-

laxation des métriques de bisimulation, nommée la distance MICo, qui contrairement à la

bisimulation, peut être estimée à travers des échantillons et nous analysons ses propriétés

théoriques. Nous en étudions les variations et prouvons des résultats de convergence liés

à l’apprentissage de la distance à travers des échantillons. Nous présentons ensuite les

résultats empiriques robustes qu’il a obtenu dans des expériences à grande échelle. Nous

introduisons une quantité connexe, les métriques de similarité du noyau, qui sont une

modification de la métrique de bisimulation originale résultant de l’itération sur l’espace

des noyaux définis positifs, plutôt que sur l’espace des métriques. Nous analysons di-

verses propriétés de ces distances à l’aide d’outils de reproduction de la théorie spa-

tiale du noyau de Hilbert et prouvons une équivalence à la distance MICo introduite

précédemment. Enfin, nous étendons et formalisons un cadre théorique des processus de

décision de Markov auxiliaires qui unifie les modifications précédentes avec la métrique

de bisimulation originale.
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Chapter 1

Introduction

Reinforcement learning is a field of machine learning concerned with designing agents

which learn to make decisions sequentially. The quality of the decisions made is dictated

by an extrinsic reward signal, provided to the agent after each decision is made.

The framework most commonly used to describe this setting is the discounted Markov

decision process (MDP). It consists of a tuple of a state space, action space, transition

function, reward function, and discount factor. The state space describes the possible

states that the environment is in, from which an agent must make decisions. The action

space represents the actions that an agent can make, these choices are the decisions the

agent learns. The transition and reward functions dictate how the environment dynamics

evolve, and provide the next state and reward after taking an action in a state. The dis-

count factor scales the importance of future rewards, controlling how myopic the agent

is. An agent makes decisions through a policy, a function which takes a state as input and

outputs an action, possibly stochastically.

For many environments, the state space is too large for the policy to learn a map for

each state. An example of this is the game of Go, one of the first breakthroughs of re-

inforcement learning, has a state space size of 1017 (Silver et al., 2016). To mitigate the

issues caused by this, one commonly embeds the state space into a Euclidean space, com-

monly referred to as the agent’s representation. If these representations are structured
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in a meaningful way, they can accelerate the agent’s learning and planning. The field of

representation learning focuses on learning these, and has experienced a surge of interest

with recent large-scale endeavours.

In this thesis, we focus on different aspects of state similarity metrics, a way of quanti-

fying the similarity between two states in MDPs. We study various metrics, and demon-

strate that they capture their behavioural similarity through various theoretical results.

We moreover show that these metrics can be used for effective representation learning,

by using metric learning to represent the different metrics in the embedding space. We

now provide in more detail an overview of the contributions.

1.1 Contributions

The MICo distance (Chapter 3)

Bisimulation metrics are a measure of the behavioural similarity of two states in an MDP,

with rich theoretical properties. Unfortunately, they are prohibitively expensive to com-

pute in practice unless one makes assumptions on the underlying environment. We pro-

pose a novel measure of state similarity known as the MICo distance, defined by a fixed-

point definition akin to bisimulation metrics but designed to be efficiently computable.

We relate the MICo distance to the bisimulation metric and prove similar theoretical

properties. We then prove how it can be learnt efficiently from samples in settings with

deterministic reward, and demonstrate that it can be learnt through a loss in function

approximation settings.

Kernel similarity metrics (Chapter 4)

State similarity metrics such as bisimulation and the MICo distance are constructed by

iterating a functional over a space of distances. In this chapter we take a different ap-

proach, and instead produce a kernel satisfying a fixed-point functional by iterating over

the space of positive definite kernels. We then leverage reproducing kernel Hilbert space
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theory to recover a distance from this kernel, which we call the kernel similarity metric.

We then prove an equivalence to a modification of the MICo distance, which allows us to

expand upon the theory and provide alternate parametrisations for use in practice.

Distributional state similarity metrics (Chapter 5)

Distributional reinforcement learning is a recent framework in which one considers the

entire distribution of returns, rather than simply the expected value. We adapt this per-

spective to state similarity metrics, and instead of considering the difference in expected

rewards as done in bisimulation, MICo, and kernel similarity metrics, we consider the

expected difference in reward distributions. This perspective allows us to produce novel

connections to concepts in distributional reinforcement learning, such as distances be-

tween the return distributions at two states. We moreover extend the sampling results

presented in Chapter 3, and prove that when the sampling procedure is performed in

general environments, one attains these distributional metrics.

Metrics as value functions in auxiliary Markov decision processes (Chapter 6)

The connection between state similarity metrics and auxiliary Markov decision processes

was first shown in (Ferns and Precup, 2014), which proved that the bisimulation metric

between two states can be realized as the optimal value function in an auxiliary Markov

decision process. This idea was further used in (Castro et al., 2021), which showed that

the MICo distance corresponds to the policy value function in a given auxiliary Markov

decision process. We formalize and generalize this framework, and show that many state

similarity metrics can be constructed by a choice of a reward function and coupling. We

provide a number of examples of these, including all state similarity metrics considered

in this thesis as well as a number of novel distances. We then use this framework to prove

a convergence result concerning convergence under changing policies (a setting which

has not been considered in theory but is commonly applied in practice), and through the

framework we show that this holds for all state similarity metrics considered.
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Chapter 2

Background

In this chapter we review basic mathematical structures, then we review basic concepts

of reinforcement learning and finally bisimulation and some of its variants.

2.1 Review of basic mathematical structures

2.1.1 Metric spaces

A metric space is a pair (X , d) of a set X with a function, called the metric d : X×X → R≥0,

such that for all x, y, z ∈ X :

• d(x, y) = 0 ⇐⇒ x = y Identity of indiscernibles

• d(x, y) = d(y, x) Symmetry

• d(x, y) ≤ d(x, z) + d(y, z) Triangle inequality

Various modifications of metrics can be formed by relaxing some of these constraints.

Pseudometric spaces arise when the identity of indiscernibles is weakened to x = y =⇒

d(x, y) = 0, which corresponds to allowing distinct states to be at zero distance from each

other. Almost all distance functions we are going to consider in this thesis will be pseu-

dometrics, and so we will freely use the term “metric” when referring to pseudometrics.
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2.1.2 Convergence and contraction

A metric d on a set X allows us to define topological notions on X , such as the openness of

sets, continuity, and convergence, which will be most important for our purposes. Given

a sequence of points (xn)n≥0 in X , we say that xn converges to x ∈ X , or xn → x, if for any

ε > 0, there exists an N > 0 such that for all n > N , d(xn, x) < ε. It is clear that the choice

of metric d plays a critical role in the convergence properties of the space (X , d).

Every convergent sequence (xn)n≥0 is Cauchy, which means that for any ε > 0, there

exists an N > 0 such that for all n,m > N , we have d(xn, xm) < ε. Intuitively, a Cauchy

sequence is one in which points become arbitrarily close to one another, which one may

expect should imply convergence. Indeed this does, however it may happen that the

point to which it converges is not in X , and so the sequence may not converge in X .

Indeed, consider the sequence xn = 1
n

, where X = (0, 1]. It is clear that xn becomes

arbitrarily close to 0, but (xn)n≥0 does not converge in X as 0 ̸∈ X . With this in mind,

one may desire that metric space (X , d) have the property that every Cauchy sequence

converges; this can equivalently be seen as the space containing all of its limit points. If

a metric space satisfies the property that every Cauchy sequence converges, it is called a

complete metric space.

Complete metric spaces are also desirable as they are a setting in which we can use

Banach’s fixed point theorem (Banach, 1922). Let (X , d) be a complete metric space, and

T : X → X be a function. A point x ∈ X is a fixed point of T if we have T (x) = x. We will

see in later sections that whether fixed points exist, and finding them, is often of interest

to us. The fixed point theorem provides a simple condition to verify this.

Definition 2.1.1. Let (X , d) be a metric space, and T : X → X be a function. T is said to

be a contraction mapping with modulus β ∈ (0, 1) if for all x, y ∈ X , we have that

d(T (x), T (y)) ≤ βd(x, y).
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Theorem 2.1.2 (Banach fixed-point theorem). Let (X , d) be a complete metric space, and T :

X → X be a contraction mapping with modulus β. Then T admits a unique fixed point x∗ ∈ X .

Moreover, for any x0 ∈ X , the sequence defined by xn+1 = T (xn) satisfies xn → x∗ as n→ ∞.

2.1.3 Metrics on probability distributions

For this chapter and the rest of the thesis, we assume the reader is familiar with the basic

concepts of measure-theoretic probability. Given a metric space X we write P(X ) for

the space of probability measures defined on the Borel sets of X . Given two probability

measures µ and ν on a set X , a coupling λ ∈ P(X × X ) of µ and ν is a joint distribution

with marginals µ and ν. Formally, we have that for every measurable subset A ⊂ X ,

λ(A×X ) = µ(A) and λ(X ×A) = ν(A).

We define Λ(µ, ν) to represent the set of all couplings of µ and ν. This set is always non-

empty, in particular, the independent coupling λ = µ× ν always exists.

Couplings are essential for the definition of the Kantorovich metric W (Kantorovich

and Rubinshtein, 1958) (also known as the Wasserstein metric), which lifts a metric d on

X onto a metric on P(X ). Given a metric d on X , the Kantorovich metric is defined as

W(d)(µ, ν) = inf
λ∈Λ(µ,ν)

∫
d(x, y) dλ(x, y).

The coupling which attains the infimum always exists, and is referred to as the optimal

coupling of µ and ν (Villani, 2008).

Another distance on probability distributions which is defined through couplings is

the total variation distance, defined for measures µ, ν as

TV (µ, ν) = inf
λ∈Λ(µ,ν)

{
P

(X,Y )∼λ
(X ̸= Y )

}
.
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One important difference of the total variation distance and the Kantorovich distance

is that the total variation does not depend on a base metric on X , while the Kantorovich

does. One way to phrase this is that for measures on metric spaces (X , d), the Kantorovich

distance accounts for geometric properties of the space while the total variation does not.

This can be seen through the following example.

Example 2.1.3. Consider the metric space (R, | · |). For n ∈ N, let µn = δ1/n, and µ = δ0,

where δx is the Dirac measure concentrated at x ∈ R. Then intuitively, (µn)n≥0 is a sequence of

Dirac measures approaching δ0. This convergence is captured through the Kantorovich metric, as

we have W(| · |)(µn, µ) = 1
n

, and we indeed have µn → µ in W(| · |). However, we have that

TV (µn, µ) = 1, and hence µn ̸→ µ in TV .

An important class of metrics on probability distributions are known as integral proba-

bility metrics (Sriperumbudur et al., 2009b, 2012). They are parametrised through a choice

of a real-valued function space F , and for a given F the metric is given through

dF (µ, ν) = sup
f∈F

∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣ .
Both the Kantorovich and total variation distances are indeed integral probability met-

rics. The total variation distance corresponds to the choice F = {f : ∥f∥∞ ≤ 1}, which

can be seen through some algebra and probabilistic arguments. The fact that the Kan-

torovich distance is an integral probability metric is less immediate. Given a metric space

(X , d), let Lip1(d) be the set of functions which are 1-Lipschitz with respect to d, that is

Lip1(d) = {f : |f(x) − f(y)| ≤ d(x, y) ∀x, y ∈ X}. The fact that when F = Lip1(d)

corresponds to the Kantorovich metric is the celebrated Kantorovich-Rubenstein duality

theorem (Kantorovich and Rubinshtein, 1958):

inf
λ∈Λ(µ,ν)

∫
d(x, y) dλ(x, y) = sup

f∈Lip1(d)

∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣ .
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2.2 Bisimulation of labelled Markov processes

2.2.1 Labelled Markov processes

A stochastic process is a sequence of random variables, formally described as an indexed

family

Xt : Ω → X ,

where (Ω,F ,P) is a probability space, X is the state space, and t ∈ T is the indexing set,

commonly thought of as time. At each time t, the process induces a probability distribu-

tion Pt over X , given by the distribution of the state at time t:

Pt(B) = P ({ω : Xt(ω) ∈ B}) .

This represents the probability that the process is in B ⊆ X at time t. One may also want

to know the probability of being in a set at time t after observing the first t − 1 values of

the process, that is the conditional probability

Pt(B
∣∣x0, . . . , xt−1) = P

(
{ω : Xt(ω) ∈ B}

∣∣X0 = x0, . . . , Xt−1 = xt−1

)
.

If the process Xt has the Markov property, the previous expression can be simplified to

only consider the previous timestep:

Pt(B
∣∣x0, . . . , xt−1) = P

(
{ω : Xt(ω) ∈ B}

∣∣Xt−1 = xt−1

)
.

If the process Xt is stationary then the distribution does not change over time, meaning

the conditional probability can be further simplified to

Pt(B
∣∣x0, . . . , xt−1) = P

(
{ω : X1(ω) ∈ B}

∣∣X0 = xt−1

)
.
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In this setting, it is common to introduce the transition kernel P : X → P(R), where

Px(B) := P(x)(B) is the probability of transitioning into B from state x. If X is finite, P

can be represented by a |X | × |X | matrix.

A labelled Markov process is an augmentation of a stationary Markov process using a set

of labels A (also known as actions). From a state x, one can choose a label a ∈ A, which

then determines the next-state dynamics. The previous transition kernel can be adapted

to take labels into account, now taking the form P : A×X → P(R), where Pa
x represents

the distribution over states after choosing a in state x.

2.2.2 Bisimulation relations

Bisimulation was invented in the context of concurrency theory by Milner (Milner, 1980)

and Park (Park, 1981). Probabilistic bisimulation (Larsen and Skou, 1991; Blute et al.,

1997; Desharnais et al., 2002; Panangaden, 2009) (henceforth just called bisimulation) is

an equivalence on the state space of a labelled Markov process, where two states are

considered equivalent if the behaviour from the states are indistinguishable. To define in-

distinguishability, we demand that transition probabilities to equivalence classes should

be the same for equivalent states; that is, the equivalence classes preserve the dynamics of

the process. In addition if there are more observables, for example, rewards, those should

match as well. Bisimulation for MDP’s was defined in (Givan et al., 2003).

This intuition can now be transformed into a definition. We say that an equivalence

relation R on X is a bisimulation relation if for any x, y ∈ X , xRy implies that

∀a ∈ A, ∀C ∈ X/R, Pa
x(C) = Pa

y (C).

We say that states x and y are bisimilar if there exists a bisimulation relation R such that

xRy. We remark that there exists at least one bisimulation relation, as the diagonal relation

∆ = {(x, x) : x ∈ X} is always a bisimulation relation, albeit the least interesting one.

One refers to the largest bisimulation relation as ∼, which is often the one of interest.
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This version is due to Larsen and Skou (Larsen and Skou, 1991) and the extension to

continuous state spaces is due to (Blute et al., 1997; Desharnais et al., 2002).

2.3 Reinforcement Learning

2.3.1 Markov decision processes

A (discounted) Markov decision process (MDP) is the setting for most formalizations of

reinforcement learning. An MDP is a tuple (X ,A,PE, γ). The interaction of an agent in the

MDP is as follows: at a given timestep t, the agent receives a state Xt ∈ X , takes an action

At ∈ A, and then receives a reward Rt ∈ R and future state Xt+1 ∈ X given the action At.

The environment dynamics PE : X × A → P(R × X ) dictates the transition dynamics of

the environment, providing the joint distribution over rewards and states, given a state

and action. The discount factor γ ∈ [0, 1) specifies how much value is assigned to future

rewards. Markov decision processes are labelled Markov processes augmented with a

reward for taking an action in a state.

A simplifying assumption that is often made is that the reward and next state are

conditionally independent given a state and action, meaning that

P
(
(Rt, Xt+1) = (rt, xt+1)

∣∣xt, at) = P
(
Rt = rt

∣∣xt, at)P (Xt+1 = xt+1

∣∣xt, at) ;
equivalently, this means there exists a reward probability PR : X×A → P(R) and transition

probability P : X ×A → P(X ) such that the measure PE decomposes into the product

PE = PR × P .

A policy π : X → P(A) is a mapping used by the agent to make decisions, and we

write

At ∼ π(· |Xt)

10



to indicate that the action At is sampled from the probability distribution π(Xt). We write

Π = P(A)X to denote the space of all policies.

We will often make use of the random trajectory (Xk, Ak, Rk)k≥0 when reasoning with MDPs.

We will occasionally take expectations with respect to policies, written as Eπ[f(Xt, At, Rt)],

which should be read as the expectation, given that for all k ≥ 0 we choose Ak ∼ π(·|Xk),

and receive Rk ∼ PR(·
∣∣Xk, Ak) and Xk+1 ∼ P(·

∣∣Xk, Ak).

Other simplifying notation we will introduce is writing Ra
x and Rπ

x as the random

variable returns from a state from an action a or policy π. That is, one has Ra
x ∼ PR(·

∣∣x, a),
and Rπ

x ∼
∑

a∈A π(a
∣∣x)PR(·

∣∣x, a). We use rax and rπx for the expectations of these random

variables, that is rax = E[Ra
x] and rπx = E[Rπ

x]. Lastly, we will write Pa
x := P(a)(x), and

Pπ
x =

∑
a∈A π(a

∣∣x)Pa
x .

The value of a policy π is the expected total return an agent attains from following π,

and is described by a function V π : X → R, such that for each x ∈ X ,

V π(x) = Eπ

[∑
t≥0

γtRt

∣∣X0 = x

]
,

A related quantity is the action-value function Qπ : X ×A → R, which indicates the value

of taking an action in a state, and then following the policy:

Qπ(x, a) = Eπ

[∑
t≥0

γtRt

∣∣X0 = x,A0 = a

]
.

A foundational relationship in reinforcement learning is the Bellman equation, which

allows the value function of a state to be written recursively in terms of next states. It

exists in two forms, for V π and Qπ respectively:

V π(x) = Eπ

[
R0 + γV π(X1)

∣∣X0 = x
]
,

Qπ(x, a) = Eπ

[
R0 + γV π(X1)

∣∣X0 = x,A0 = a
]
.
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Using the simplifying notation introduced earlier, we can write the Bellman equations

as

V π(x) = rπx + γ E
x′∼Pπ

x

[V π(x′)] ,

Qπ(x, a) = rax + γ E
x′∼Pa

x ,a
′∼π(·|x′)

[Qπ(x′, a′)] .

The Bellman optimality equations are obtained by taking a maximum of the above equa-

tions over all policies, and are given by

V ∗(x) = max
π∈Π

V π(x)

Q∗(x, a) = max
π∈Π

Qπ(x, a)

The Bellman operator T π transforms the above equations into an operator over RX (or

RX×A - we will overload the use of T π and let the type signature indicate which is being

used), given by

T π(V )(x) = rπx + γ E
x′∼Pπ

x

[V (x′)] ,

T π(Q)(x, a) = rax + γ E
x′∼Pa

x ,a
′∼π(·|x′)

[Q(x′, a′)] .

Written in this way, we see that Qπ and V π are fixed points of T π, and with some work

one can also see that T π is a contraction with modulus γ. As a corollary of Banach’s fixed

point theorem, one can choose V0 arbitrarily and update Vk+1 = T πVk, and converge to

V π, this is the algorithm known as value iteration.

2.3.2 MDP bisimulation

As Markov decision processes may be seen as Markov processes with rewards, bisimula-

tion relations and metrics have a natural analogue in this setting.
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Definition 2.3.1. An equivalence relation R on X is a bisimulation relation if

xRy =⇒ ∀a ∈ A, rax = ray and ∀C ∈ X/R, Pa
x(C) = Pa

y (C).

The stringency of bisimulation relations is apparent in the MDP case: if two states have

bisimilar transition dynamics, that is we have that ∀a and ∀C ∈ X/R, Pa
x(C) = Pa

y (C),

but |rax − ray | = ε > 0, then x and y are in different equivalence classes. This motivates

us to introduce a metric analogue of bisimulation. We will write M(X ) to represent the

space of pseudometrics on X .

Definition 2.3.2. (Bisimulation metrics). For a given cR ∈ (0,∞] and cT ∈ (0, 1), define

F : M(X ) → M(X ) as

F(d)(x, y) = max
a∈A

(
cR |rax − ray |+ cT W(d)(Pa

x ,Pa
y )
)
.

Then F is a contraction in ∥ ·∥∞ with modulus cT , and hence exhibits a unique fixed point

d∼, which we denote a bisimulation metric. Justification for the term bisimulation metric

follows from the fact that the kernel of d∼ is a bisimulation relation.

We will often take cR = 1 and cT = γ, as we will see that these correspond to value

functions most naturally. We note that in the original definition presented in (Ferns et al.,

2004) M(X ) the constants cR and cT were restricted so that cR + cT ≤ 1. This restric-

tion was necessary for the proof of the existence of the metric, as the proof relied on the

Knaster–Tarski fixed point theorem for lattices, and restricting M(X ) to be 1-bounded

made it a lattice. In this treatment however we rely on the Banach fixed point theorem,

and do not require that elements of M(X ) are bounded.

We will now discuss the term behavioural metrics. We say that d is a behavioural metric

if d(x, y) in some way measures the behavioural distance of x and y, where the behaviour

of a state refers to a measure of the transition and reward dynamics from a state, rather

than a naive distance which simply compares pixel values or other surface-level state
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differences. In the sense of bisimulation metrics, we now demonstrate that d∼ measures

behavioural similarity in the sense of optimal value functions.

Theorem 2.3.3. Suppose that cR ≥ γ, then we have that for any x, y ∈ X ,

|V ∗(x)− V ∗(y)| ≤ 1

1− cT
d∼(x, y).

Moreover, in the case that cT = γ, we have

|V ∗(x)− V ∗(y)| ≤ d∼(x, y).

The concept of a bisimulation metric was first introduced in (Desharnais et al., 1999,

2004) and adapted to MDP’s in (Ferns et al., 2004)

2.3.3 On-policy bisimulation

Bisimulation considers equivalence across all possible actions, which is a strong notion

of equivalence. In many settings, in a given state an agent may not be concerned with

the behaviour under every possible action, but instead only with the actions which it

may take under a given policy. On-policy bisimulation (Castro, 2020) was introduced

to address this. The definition is a straightforward modification of MDP bisimulation,

adapted to a given policy.

Definition 2.3.4 (On-policy bisimulation relations). Let π be a fixed policy. An equiva-

lence relation R on X is a π-bisimulation relation if

xRy =⇒ rπx = rπy and ∀C ∈ X/R,Pπ
x (C) = Pπ

y (C).

It is important to note that while the two definitions appear very similar, they have

intrinsic differences. In particular, two states which are bisimilar need not be π-bisimilar,

and two states which are π-bisimilar need not be bisimilar. To see this intuitively, con-
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sider two states which are bisimilar, then they are behaviourally identical under every

action. But a given policy may select actions differently between the two states so that the

expected rewards under the policy are different between the states, and in particular the

two states are not π-bisimilar. On the other hand, two states may have different dynamics

across different actions, and hence not be bisimilar, but the policy can balance the actions

such that the states are π-bisimilar.

The π-bisimilarity equivalence relation, like ordinary bisimulation, is sensitive to small

changes in the system parameters; so defining a metric in place of a relation is the natural

next step.

Definition 2.3.5 (On-policy bisimulation metrics). For a policy π onM , define Fπ : M(X ) →

M(X ) as

Fπ(d)(x, y) = |rπx − rπy |+ γW(d)(Pπ
x ,Pπ

y ).

Then Fπ is a contraction with modulus γ, and hence admits a unique fixed point dπ∼,

which we define to be the π-bisimulation metric.

It is straightforward to see that the kernel of dπ∼ is an on-policy bisimulation relation,

justifying its name. Akin to bisimulation metrics, π-bisimulation metrics posess desirable

continuity properties when it comes to policy value functions.

Proposition 2.3.6. Let π be a policy, then for any x, y ∈ X , we have that

|V π(x)− V π(y)| ≤ dπ∼(x, y).

2.3.4 Learning from samples

An important concept in reinforcement learning is that an agent often does not have

access to the P and R beforehand, and instead must learn from a stream of samples

(Xk, Ak, Rk, X
′
k)k≥0. As an example, computing the value function V π through Bellman

iteration, that is computing the sequence Vk+1 = T πVk, requires knowledge of both P and

R to compute the Bellman operator. Temporal difference learning is the sample-based
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counterpart to this operator, which builds a sequence of value function estimates (Vk)k≥0

from a sequence of samples (Xk, Ak, Rk, X
′
k)k≥0 as

Vk+1(Xk) = (1− αk)Vk + αk (Rk + γVk(X
′
k)),

and Vk+1(x) = Vk(x) for x ̸= Xk, where (αk)k≥0 is a sequence of stepsizes satisfying the

Robbins-Monro conditions.

In general, sample-based methods allow one to transform an operator that depends

on knowledge of P and R into an incremental algorithm that depends only on samples.

Formally, let O be an operator over some space of functions, whose fixed point F ∗ is of

interest. Given a sample (Xk, Ak, Rk, X
′
k), we construct a sample target Ô which only

depends on the sample. It is essential that the sample target is unbiased, in the sense that

for any function F , we have

Eπ[ÔF ] = O F.

With this, one can construct a sequence of iterates (Fk)k≥0 by choosing F0 arbitrarily and

setting

Fk+1 = (1− αk)Fk + αk Ô(Fk),

where (αk)k≥0 is a sequence of stepsizes. We then have convergence of Fk → F ∗ if the

following conditions are met (Bertsekas and Tsitsiklis, 1996):

1. The stepsizes (αk)k≥0 satisfy the Robbins-Monro conditions (Robbins and Monro,

1951), that is:

∑
k≥1

αk = ∞,
∑
k≥1

α2
k <∞,

both with probability 1.
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2. The noise process is a martingale difference sequence:

E[Ô(Fk)−O(Fk)
∣∣α0, . . . , αk, F0, . . . , Fk] = 0.

3. The noise process has bounded conditional variance: there exists A,B ∈ R such that

E[(Ô(Fk)−O(Fk))
2
∣∣α0, . . . , αk, F0, . . . , Fk] ≤ A+B∥Fk∥2.

The process of learning from a stream of samples is also known as incremental learn-

ing or stochastic approximation, and has been vital in almost all modern reinforcement

learning successes.
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Chapter 3

MICo

3.1 Introduction

3.1.1 Drawbacks of the bisimulation metric

Using dynamic programming approaches, bisimulation metrics can be computed by it-

erating dk+1 = F(dk) for classical bisimulation, or dk+1 = Fπ(dk) for on-policy bisimula-

tion. These can compute an ε-approximation of the metric in inO(|X |5|A| log ε/log γ) time

for classical bisimulation, and O(|X |5 log ε/log γ) time for on-policy bisimulation (Castro

et al., 2021). Being dynamic programming approaches however, these methods require

exact knowledge of P and R for each iteration.

Various works have attempted to adapt learning bisimulation metrics in the online

reinforcement-learning setting, however they either produce biased estimates of the met-

ric (Ferns et al., 2006), or require assumptions such as transitions which are deterministic

(Castro, 2020) or Gaussian (Zhang et al., 2021).
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3.2 Definition

3.2.1 The Łukaszyk–Karmowski distance

In subsection 2.1.3, we discussed couplings, and noted that for any pair of probability

distributions µ, ν on a set X , the space of couplings Λ(µ, ν) is never empty since the in-

dependent coupling λ = µ × ν always exists. We recall the definition of the Kantorovich

metric which optimizes over the space of couplings when computing the distance:

W(d)(µ, ν) = inf
λ∈Λ(µ,ν)

∫
d(x, y) dλ(x, y).

The main computational difficulty of calculating the Kantorovich distance comes from

calculating this infimum, since for each pair of measures one must solve an optimization

problem. The Łukaszyk–Karmowski distance dLK (Łukaszyk, 2004) eschews this optimiza-

tion, and instead considers the independent coupling between the measures. That is,

dLK(d)(µ, ν) =

∫
d(x, y) d(µ× ν)(x, y),

or equivalently

dLK(d)(µ, ν) = E
x∼µ,y∼ν

[d(x, y)].

Without the need for the optimization over couplings, the computation of dLK reduces

to the above computation, which is much more computationally efficient. When the base

distance d is the Euclidean distance ∥·∥, the Łukaszyk–Karmowski distance has been used

in econometrics, usually referred to as Gini’s coefficient (Gini, 1912; Yitzhaki, 2003).

The computational advantage comes at a price, however. While the Kantorovich sat-

isfies all the axioms of a proper metric, the Łukaszyk–Karmowski distance does not. In

particular, it does not satisfy the identity of indiscernibles, but not in the same way as

pseudometrics. In particular, one may find a measure µ such that dLK(d)(µ, µ) > 0. One

can in fact show that a measure µ satisfies dLK(d)(µ, µ) = 0 if and only if µ is a Dirac mea-
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sure, that is µ = δx for some x ∈ X (the Dirac measure concentrated at x ∈ X is written

as δx and assigns mass 1 to x, and mass 0 to the rest of X ). We will see that the other

direction is true as well, and that dLK(d)(µ, µ) is in some sense a measure of dispersion of

µ. One interpretation of this in the literature (Łukaszyk, 2004) is that dLK captures the

concept of uncertainty: given two random variables X ∼ µ, Y ∼ ν, unless µ and ν are

point masses, observed values of X and Y are less likely to be equal depending on the

dispersions of µ and ν. Hence dLK captures a measure of uncertainty in the observed dis-

tance of X and Y , compared to a proper probability metric which would assign distance

0 if Law(X) = Law(Y ).

The concept of distance functions with non-zero self distances has been considered

before, in particular through partial metrics (Matthews, 1994). A partial metric is a function

d : X × X → [0,∞) such that for any x, y, z ∈ X :

• 0 ≤ d(x, y) Non-negativity

• d(x, x) ≤ d(x, y) Small self-distances

• d(x, y) = d(y, x) Symmetry

• if d(x, x) = d(x, y) = d(y, y), then x = y Indistancy implies equality

• d(x, y) ≤ d(x, z) + d(y, z)− d(z, z) Modified triangle inequality

We note that there were additional axioms added to this definition, rather than simply

removing the requirement that d(x, x) = 0. This is due to the fact that this definition

was constructed so that one can easily construct a proper metric d̃ from a partial metric

d, given by d̃(x, y) = d(x, y) − 1
2
(d(x, x) + d(y, y)). We can now show that this definition

is indeed too strong for the Łukaszyk–Karmowski distance, which we demonstrate in the

following examples.

Example 3.2.1. The Łukaszyk–Karmowski distance does not have small self-distances.

Proof. Take X = [0, 1], d = | · |, µ = δ1/2, ν = U([0, 1]). Then d(ν, ν) = 1
3
> 1

4
= d(µ, ν).
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Example 3.2.2. The Łukaszyk–Karmowski distance does not satisfy the modified triangle inequal-

ity.

Proof. Take X = [0, 1], d = | · |, µ = δ0, ν = δ1, η = 1
2
(δ0 + δ1). Then we have

d(µ, ν) = 1 >
1

2
= d(µ, η) + d(ν, η)− d(η, η),

breaking the inequality.

To account for this, Castro et al. (2021) introduced a new notion of distance known

as diffuse metrics. A diffuse metric is a function d : X × X → [0,∞) such that for any

x, y, z ∈ X :

• 0 ≤ d(x, y) Non-negativity

• d(x, y) = d(y, x) Symmetry

• d(x, y) ≤ d(x, z) + d(y, z) Triangle inequality

It is straightforward to see that the Łukaszyk–Karmowski distance is a diffuse metric.

In addition, an attractive property of the Łukaszyk–Karmowski distance for the reinforce-

ment learning setting is that it lends itself readily to stochastic approximation. Given a

stream of samples (xn)n≥1, (yn)n≥1 from random variables X ∼ µ and Y ∼ ν respectively,

a base metric d, and a sequence of step sizes (αn)n≥1 satisfying the Robbins-Monro condi-

tions, one can construct a sequence of iterates (dn) defined by

dn = (1− αn) dn−1 + αn d(xn, yn),

with d0 = 0. Then we have dn → dLK(d)(µ, ν) as n→ ∞ (Robbins and Monro, 1951).

3.2.2 The MICo distance

As the most expensive step of computing bisimulation distances comes from the com-

putation of the Kantorovich, it is a natural next step to use the Łukaszyk–Karmowski
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distance to simplify the computation. This is the idea behind the MICo distance. Given a

set X , we will use the notation Mdiff (X ) to represent the space of diffuse metrics on X .

We can now use this to define the MICo distance.

Definition 3.2.3. Given a policy π, the MICo operator T π
M : Mdiff (X ) → Mdiff (X ) is

given by

T π
M(U)(x, y) = |rπx − rπy |+ γ dLK(U)(Pπ

x ,Pπ
y )

It is straightforward to see that T π
M maps Mdiff (X ) into Mdiff (X ). From the following

proposition, one can apply Banach’s fixed point theorem to see the existence of a unique

fixed point Uπ which satisfies

Uπ(x, y) = |rπx − rπy |+ γ dLK(U
π)(Pπ

x ,Pπ
y ).

Proposition 3.2.4. The MICo operator T π
M is a contraction with modulus γ.

Proof. For U,U ′ ∈ Mdiff (X ),

∥T π
M(U)− T π

M(U ′)∥∞ = sup
x,y∈X

|T π
M(U)(x, y)− T π

M(U ′)(x, y)|

= sup
x,y∈X

∣∣γdLK(U)(Pπ
x ,Pπ

y )− γdLK(U
′)(Pπ

x ,Pπ
y )
∣∣

≤ γ sup
x,y∈X

{
E

x′∼Pπ
x ,y

′∼Pπ
y

[|U(x′, y′)− U ′(x′, y′)|]
}

≤ γ∥U − U ′∥∞.

3.2.3 Properties of the MICo distance

We recall that one of the appealing properties of bisimulation (both original and on-

policy), was that it upper-bounded the absolute distance between value functions (op-
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timal or on-policy). We now present a theorem that shows that this is indeed the case for

the MICo distance as well.

Theorem 3.2.5 (Value function upper bound). The MICo distance upper bounds the absolute

difference between policy-value functions. That is, for x, y ∈ X , we have

|V π(x)− V π(y)| ≤ Uπ(x, y).

Proof. Let V0 : X → R be defined as V0(x) = 0 for all x ∈ X , and U0 : X × X → R be

defined as U0(x, y) = 0 for all x, y ∈ X . We can then define sequences (Vk)k≥0 and (Uk)k≥0

by Vk+1 = T πVk, Uk+1 = T π
M(Uk). From Banach’s fixed point theorem, we know that both

(Vk) → V π and (Uk) → Uπ uniformly. Let x, y ∈ X be arbitrary, we will now prove by

induction that for all k, we have

|Vk(x)− Vk(y)| ≤ Uk(x, y).

The base case k = 0 is immediate, since both the left hand side and right hand side are 0.

We can now let k ≥ 0 and assume the induction hypothesis for k, and see that

|Vk+1(x)− Vk+1(y)| = |T πVk(x)− T πVk(y)|

=

∣∣∣∣rπx + γ E
x′∼Pπ

x

[Vk(x
′)]−

(
rπy + γ E

y′∼Pπ
y

[Vk(y
′)]

)∣∣∣∣
≤ |rπx − rπy |+ γ E

x′∼Pπ
x ,y

′∼Pπ
y

[|Vk(x′)− Vk(y
′)|]

≤ |rπx − rπy |+ γ E
x′∼Pπ

x ,y
′∼Pπ

y

[Uk(x
′, y′)]

= |rπx − rπy |+ γ dLK(Uk)(Pπ
x ,Pπ

y )

= T π
M Uk(x, y)

= Uk+1(x, y),
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as desired. Hence we have that |Vk(x) − Vk(y)| ≤ Uk(x, y) for any x, y ∈ X . We can now

take k → ∞ on both sides, and since (Uk)k≥0 and (Vk)k≥0 both converge uniformly, we can

conclude

|V π(x)− V π(y)| ≤ Uπ(x, y).

As discussed in subsection 3.1.1, one of the most important drawbacks of bisimulation

metrics is the fact that it cannot be estimated in an online fashion through samples. The

following theorem now shows that this is not the case for the MICo distance, in the setting

that the reward from a state is independent of the chosen action.

Theorem 3.2.6 (Online approximation). Let M = (X ,A,P ,R, γ) be a Markov decision pro-

cess, and π be a policy on M such that the reward from a state under the policy is constant

(e.g. if the policy and reward is deterministic, or if the reward under all actions are equal). Let

(Xk, Ak, Rk, X
′
k)k≥0 and (Yk, A

′
k, R

′
k, Y

′
k)k≥0 be two sequences of transitions in M following π.

Moreover, let (αk)k≥0 be a sequence of stepsizes satisfying the Robbins-Monro conditions. Let

(Uk)k≥0 be a sequence of estimates constructed by choosing U0 arbitrarily, and setting

Uk+1(Xk, Yk) = (1− αk)Uk(Xk, Yk) + αk (|Rk −R′
k|+ γUk(X

′
k, Y

′
k))

Uk+1(x, y) = Uk(x, y) if (x, y) ̸= (Xk, Yk).

Then if each pair of states is sampled infinitely often, we have that Uk → Uπ with probability 1.

Proof. We can add and subtract the MICo operator applied to Uk, T π
M(Uk), from the target

of the update rule, giving us

Uk+1(Xk, Yk) = (1− αk)Uk(Xk, Yk) + αk

T π
M(Uk) + |Rk −R′

k|+ γUt(X
′
k, Y

′
k)− T π

M(Uk)︸ ︷︷ ︸
wk

 .

We proceed following Bertsekas and Tsitsiklis (1996), and must show that: (i) wk is a

martingale difference sequence, and (ii) wk has bounded conditional variance.

24



To begin, let Fk = σ (U0, · · · , Uk, w0, · · ·wk, α0, · · · , αk, X0, · · · , Xk, Y0, · · · , Yk) be the

sigma algebra representing all the information contained in the sampling process up to

time k. We first show that wk is a martingale difference process:

E [wk|Fk] = E
[
|Rk −R′

k|+ γUt(X
′
k, Y

′
k)− T π

M(Uk)
∣∣Fk

]
= E

[
|Rk −R′

k|+ γUt(X
′
k, Y

′
k)− T π

M(Uk)
∣∣Xk, Uk

]
= 0,

where we used the fact that sinceRk andR′
k are both almost surely constant, E[|Rk−R′

k|] =

|E[Rk]− E[R′
k]|.

We now must bound the conditional variance of the noise term, such that E[w2
k|Fk] ≤

A+B∥Uk∥2. We can write out

E
[
w2

k|Fk

]
= E

[
(|Rk −R′

k|+ γUk(X
′
k, Y

′
k)− T π

M(Uk))
2 ∣∣Fk

]
≤ E

[
(|Rk −R′

k|+ γUk(X
′
k, Y

′
k))

2
+ (T π

M(Uk))
2
∣∣Xk, Uk

]
= E

[
(|Rk −R′

k|+ γUk(X
′
k, Y

′
k))

2 ∣∣Xk, Uk

]
+ E

[
(T π

M(Uk))
2
∣∣Xk, Uk

]
≤ A+B∥Uk∥2.

3.2.4 On self-distances

An interesting point to note is studying when a state has nonzero self-distance. We can

write out the self-distance for a state x as

Uπ(x, x) = γ dLK(Pπ
x ,Pπ

x ),

so we see that the magnitude of the self-distance comes entirely from the Łukaszyk–Karmowski

distance between the transition distributions. We know that the Łukaszyk–Karmowski
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self-distance measures the dispersion of a distribution, in the sense that it is minimised

for a point mass, and maximised for a distribution which is maximally “spread out”.

Since we are measuring the self-distance of the transition distribution Pπ
x , we can see that

Uπ(x, x) in a sense measures the dispersion of the transition dynamics from x.

As a converse to the previous point, we may inquire what happens when there is no

dispersion in the transition distributions, that is when we have an MDP with determinis-

tic transitions. In this case, we can see that the MICo distance Uπ is equal to the on-policy

bisimulation distance dπ; this is because of the fact that

W(d)(δx, δy) = dLK(d)(δx, δy) = d(x, y).

3.3 Representation learning using diffuse metrics

In many reinforcement learning applications, it is infeasible to compute value functions

and related quantities in a table parametrised by states, which we will refer to as tabular

reinforcement learning. Instead, one commonly uses a feature map ϕ : X → Rd to sim-

plify the setting and improve generalization (Lyle et al., 2021). It is common to refer to

the matrix Φ = [ϕ(x)]x∈X ∈ RX×d as the agent’s representation (Tu and Recht, 2018).

For example, in the linear function approximation setting value functions are parametrised

through a representation Φ and a weight vector w, so that for each x ∈ X

V (x) = ⟨ϕ(x), w⟩,

or concisely

V = Φw.

The field of representation learning is concerned with learning a good representation,

allowing more efficient learning and generalization (Lan et al., 2022; Dabney et al., 2020).

A behavioural distance perspective on representation learning could be that for a be-
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havioural distance d, one should strive for the representation distance of states to approx-

imate their behavioural distance, that is ∥ϕ(x)− ϕ(y)∥ ≈ d(x, y).

For the MICo distance, and more generally any behavioural diffuse metric, the above

goal presents an issue: a given state may have positive self-distance, that is d(x, x) > 0,

however for any representation ϕ, we have that |ϕ(x) − ϕ(x)| = 0. In other words, any

learnt representation ϕ to approximate d will be biased. One may consider only learning

d for pairs of distinct points, and not for self distances. This corresponds to learning

|ϕ(x)− ϕ(x)| ≈ d̃(x, y), where

d̃(x, y) =


d(x, y) if x ̸= y

0 if x = y

While this may be an attractive idea, it is relatively naive. For example d̃may not preserve

continuity, as it can be seen as ‘slicing off the diagonal’. A less crude way of approaching

this issue can be done by subtracting the self-distances at each point, as done in Matthews

(1994) and Cuturi (2013). This can be seen as a projection onto the space of functions with

zero self-distances, and for a diffuse metric d, we define the projected reduced metric Πd

as

Πd(x, y) = d(x, y)− 1

2
(d(x, x) + d(y, y)).

It is straightforward that Πdwill satisfy both symmetry and zero self-distances. However,

Πdmay not satisfy the triangle inequality, depending on the properties of d. If d is a partial

metric, then Πd will indeed satisfy the triangle inequality and be a proper metric. As the

MICo distance may not be a partial metric (depending on the MDP), the projected MICo

distance ΠUπ may not be a proper metric.

We now see that ΠUπ loses another desirable property of the MICo distance, the value

function upper bound. This upper bound is important for a number of reasons: when it

holds for a state metric d, it indicates that the value function is well-behaved (continuous)

with respect to d. Moreover, as the goal of value-based reinforcement learning is learning
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the value function, having the upper bound hold suggests that agglomerating states with

close distances under d does not hurt the ability to learn the value function.

Proposition 3.3.1. The projected MICo distance ΠUπ may not satisfy the value function upper

bound.

Proof. Consider the two state MDP where X = {x, y}, A = {a}, Pa
x = 1

2
(δx + δy), Pa

y = δy,

and both Ra
x = 1, Ra

y = 0 almost surely. Since there is a single action, there exists a single

policy π. One can calculate

V π(x) =
1

1− γ
2

, V π(y) = 0, Uπ(x, y) =
1

1− γ
2

, Uπ(x, x) =
γ

2(1− γ
4
)(1− γ

2
)
, Uπ(y, y) = 0.

This gives us that

|V π(x)− V π(y)| = 1

1− γ
2

>
1

1− γ
4

= ΠUπ(x, y).

Despite this negative result, one can inquire how much this bound is broken in prac-

tice, and to what extent. We study this, by analyzing how much the bound is broken

on average, across a class of random MDPs. The choice of random MDP used are Gar-

net MDPs (Archibald et al., 1995; Piot et al., 2014), which are built through the following

construction:

1. Fix a number of states nX and a number of actions nA

2. For each (x, a) ∈ {1, . . . nX} × {1, . . . , nA}, choose a branching factor bx,a uniformly

in {1, . . . , nX}

3. For each (x, a) ∈ {1, . . . nX} × {1, . . . , nA}, construct Pa
x by uniformly choosing bx,a

states with replacement and creating a probability distribution from these samples

4. For each (x, a) ∈ {1, . . . nX} × {1, . . . , nA}, choose rax uniformly from U([0, 1]).
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Figure 3.1: The gap between the difference in values and the various distances for Garnet

MDPs with varying numbers of states and actions.

We vary the number of states nX from 2 to 20, and for each MDP sample 100 stochastic

policies (πk)
100
k=1. For each Garnet MDP we compute the average upper bound gap across

the 100 policies, computed as

1

100|nX |2
100∑
k=1

nX∑
i=1

nX∑
j=1

(d(xi, xj)− |V π(xi)− V π(xj)|) ,

where d is a distance function (we consider Uπ, ΠUπ, and d∼π ). We note that we are mea-

suring the signed difference: if it is negative it indicates that the bound is being broken,

and the magnitude of the value indicates how vacuous the bound is. We plot the result of

this in Figure 3.1. As can be seen in the graph, although ΠUπ is the only distance which

does not have the value function upper bound property, it is the closest approximate to

the absolute value function difference, which is an indication that it produces effective

features.
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3.4 Applications to deep reinforcement learning

3.4.1 Deep Q Networks

Deep Q learning is an extension of the Q-learning algorithm to leverage the power of

neural networks. The original architecture is DQN (Mnih et al., 2015), which represents

the Q function as a neural network made up of five hidden layers: three convolutional

layers, and two dense layers. The final dense layer has width |A|, giving one output per

action. The network can be written as a composition of two functions, a representation

function ϕω which represents the three convolutional layers with parameters ω, and the

function approximator ψξ which represents the two dense layers with parameters ξ. For

an input state x, the network outputs Qω,ξ(x, ·) = ψξ(ϕω(x)), where we use the subscripts

ω and ξ to indicate that the function depends on both sets of parameters.

As the agent interacts in the environment, transition tuples of the form (x, a, r, x′) are

stored in a replay buffer D. The learning process learns Q∗ using Bellman’s optimality

equation

Q∗(x, a) = rax + γmax
a′∈A

E
x′∼Pa

x

[Q∗(x′, a′)],

by using the fact that if Qω,ξ can be learnt so that

Qω,ξ(x, a) ≈ rax + γmax
a′∈A

E
x′∼Pa

x

[Qω,ξ(x
′, a′)],

then Qω,ξ ≈ Q∗. To learn this, the network minimizes the following loss across the replay

buffer:

L(ω, ξ) = E
(x,a,r,x′)∼D

[(
Qξ,ω(x, a)− (r +max

a′∈A
Qξ,ω(x

′, a′))

)2
]
.

The value r+maxa′∈AQξ,ω(x
′, a′) is known as the target, and can be seen as the learning

objective of the network. The fact that the objective depends on the current network itself

is a phenomenon known as bootstrapping (Sutton and Barto, 2018). Since the target is

changing with the current value, this can lead to unstable training. One way that Mnih
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et al. (2015) accounted for this was by using target networks: every 8000 evironment steps,

they ‘freeze’ a snapshot of the parameters ω and ξ and refer to these frozen parameters as

ω̄ and ξ̄. These frozen parameters are then used in the target, and the loss becomes

L(ω, ξ) = E
(x,a,r,x′)∼D

[(
Qξ,ω(x, a)− (r +max

a′∈A
Qξ̄,ω̄(x

′, a′))

)2
]
.

3.4.2 The MICo loss

Recalling the goal of representation learning, our goal for the MICo loss would be to adapt

the learned representations so that d(ϕω(x), ϕω(y)) ≈ ΠUπ(x, y). We will see that choosing

d to be the cosine distance between the embeddings lends itself nicely to a neural network

parametrisation, where the cosine distance θ(x, y) is the angle between the vectors x and

y ∈ Rd, given by

θ(x, y) = arccos

(
x · y

∥x∥∥y∥

)
.

One difficulty that arises is that to produce an unbiased esimate of ΠUπ(x, y), we require

at least two samples from x and y. This is because ΠUπ(x, y) contains the self-distance

terms, Uπ(x, x) and Uπ(y, y). Looking at Uπ(x, x), we can write out

Uπ(x, x) = dLK(U
π)(Pπ

x ,Pπ
x )

is the Łukaszyk–Karmowski distance between the transition distribution from x and it-

self. This is impossible to estimate unbiasedly with only a single sample of Pπ
x , since

the estimate from a single sample will always be 0. In deep reinforcement learning, it is

extremely rare to visit a state twice, and so expecting to learn ΠUπ directly is unrealistic.

As a result of this, we will need to learn ΠUπ implicitly. To do this, we will learn Uπ,

and parametrise it in the neural network as

Uω(x, y) =
∥ϕω(x)∥+ ∥ϕω(y)∥

2
+ β θ(ϕω(x), ϕω(y)).
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Figure 3.2: A visualization of the reduced MICo distance as the angular distance between

representations.

We note that we only use the parameters ω here, the parametrisation of Uπ lives entirely

in the representation component of the neural network. By parametrising Uω in this way,

we can see that

ΠUω(x, y) = Uω(x, y)−
1

2
(Uω(x, x) + Uω(y, y))

= β θ(ϕω(x), ϕω(y)),

so that we are indeed learning angular distances in ϕ which approximate the reduced

MICo distance. β is a scalar hyperparameter which represents how much weight should

be applied to the angular distance term. We present a diagram visualizing how ΠUπ

models the angular distance in Figure 3.2.

With this parametrisation, we can now define the learning process with which Uω is

learnt. The procedure follows the outline of how the Bellman equation was transformed

into a loss in subsection 3.4.1. We know that Uπ satisfies the recursive equation

Uπ(x, y) = |rπx + rπy |+ γ E
x′∼Pπ

x ,y
′∼Pπ

y

[Uπ(x′, y′)].
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We can adapt this into a loss for deep reinforcement learning, letting ω̄ be the frozen

parameters for ω, our learning target for pair of transitions ⟨x, rx, x′⟩, ⟨y, ry, y′⟩ is

|rx − ry|+ γUω̄(x
′, y′).

Using this, we can construct the metric loss LMICo as

LMICo(ω) = E
⟨x,rx,x′⟩,⟨y,ry ,y′⟩∼D

[(
Uω(x, y)−

(
|rx − ry|+ γUω̄(x

′, y′)
))2

]
.

We refer to the loss used by an agent to train its behaviour as LTD, the temporal difference

loss. For example, LTD for DQN is the loss we derived at the end of subsection 3.4.1. To

use the MICo loss for an agent, we combine the losses using a parameter α:

LTotal(ξ, ω) = (1− α)LTD(ξ, ω) + αLMICo(ω).

There are two important things to note regarding the construction of this total loss. Firstly,

LMICo only depends on ω, so it directly shapes the representations learnt without being

affected by the function approximator’s parameters ξ. Secondly, the construction of the

MICo loss does not depend on the choice of agent used, and so it can be applied to any

existing agent.

3.4.3 Empirical performance

To study the empirical performance of the MICo loss, we add it as an auxiliary loss (as

shown in the equation for LTotal) to various value-based agents, and evaluate across the

Atari benchmark (Bellemare et al., 2013; Machado et al., 2018). We add the loss to all

agents provided in the Dopamine (Castro et al., 2018) library, which are: DQN (Mnih et al.,

2015), Rainbow (Hessel et al., 2018), QR-DQN (Dabney et al., 2018b), IQN (Dabney et al.,

2018a), and M-IQN (Vieillard et al., 2020). We report the score of the agent augmented

with the MICo loss compared to the original agent across all 60 games and all 5 agents
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in Figure 3.3. As seen in the figure, the performance of all 5 agents were improved on

average, including M-IQN, which is the state-of-the-art value-based agent on Atari at the

time of this writing.

3.5 Discussion and future work

In this chapter, we introduced a novel distance for computing state similarity in Markov

decision processes, importantly one that is computable through stochastic approximation

and hence applicable in large-scale settings. We describe a process to transform the dis-

tance into a loss, which can be applied to any agent, and we present results using the loss

across various agents on the Atari benchmark.

There are a number of directions which future work can be taken. Firstly, we recall

that in deep reinforcement learning settings, the reduced distance ΠUπ cannot be learnt

directly due to the fact that we almost never visit the same state twice. Although we are

able to avoid this issue by learning ΠUπ implicitly, this is not an entirely satisfactory solu-

tion. One possible way around this is to leverage model-based reinforcement learning, in

particular recent advances such as Dreamer (Hafner et al., 2019) seem promising, since we

would not have to ‘naturally’ visit a state twice, we can instead sample two trajectories

from a state to estimate self-distances.

A second direction is a study of the looseness of the value function upper bound, in-

spired by Figure 3.1. In previous work on state similarity metrics (including this one), the

primary relationship of interest is whether a distance d upper bounds the value function,

that is

|V π(x)− V π(y)| ≤ d(x, y).

However, as suggested from Figure 3.1, whether this upper bound holds may not be the

most important question. It may be more important whether we have that

∣∣∣∣|V π(x)− V π(y)| − d(x, y)

∣∣∣∣
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is small. For an extreme example of the upper bound alone not being sufficient, consider

the setting where the reward is bounded in [0, 1]. Then V π ∈ [0, 1
1−γ

], and so the dis-

tance d(x, y) = 2
1−γ

1x ̸=y upper bounds |V π(x)− V π(y)|, but is an uninteresting and trivial

similarity metric.
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Figure 3.3: Percentage improvement in returns when adding LMICo to various agents

where the results are averaged over 5 independent runs.
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Chapter 4

A Kernel Perspective

In this chapter we consider a slightly modified objective, and learn similarity measures

on MDPs, rather than distance measures. We accomplish this using theory of positive-

definite kernels, and prove that this approach allows us to recover a distance function

from a Hilbert space embedding. We then prove equivalence of this distance function

to the reduced MICo distance ΠUπ from Chapter 3, and discuss possible directions this

equivalence gives us.

4.1 Background

In this section we review mathematical background covering vector spaces, reproducing

kernel Hilbert spaces, the MMD, and its equivalence to the energy distance.

4.1.1 Hilbert spaces

A (real) normed space is a vector space V with a function ∥ · ∥ : V → R, which satisfies

the following for all x, y ∈ V , α ∈ R:

• ∥x∥ ≥ 0 Positivity

• ∥x∥ = 0 ⇐⇒ x = 0 Identity of indiscernibles
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• ∥αx∥ = |α|∥x∥ Absolute homogeneity with respect to scalar multiplication

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥ Triangle inequality

A normed space is a stronger notion than a metric space, since a norm induces a metric d

through d(x, y) = ∥x− y∥. An inner product space is a stronger notion of a normed space,

which is described as a vector space V with a function ⟨·, ·⟩ : V × V → R such that for all

x, y, z ∈ V , α, β ∈ R:

• ⟨x, y⟩ = ⟨y, x⟩ Symmetry

• ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩ Linearity in the first argument

• ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇐⇒ x = 0 Positive definiteness

An inner product induces a normed space through ∥x∥ = ⟨x, x⟩1/2. If an inner product

space induces a normed space whose topology is complete, then the space (V, ⟨·, ·⟩) is

referred to as a Hilbert space. A normed space whose topology is complete is referred to as

a Banach space, and we remark that Hilbert spaces are a proper subset of Banach spaces.

Hilbert spaces have many desirable properties, one which will become important for

the following theory is the Riesz representation theorem. Given a Hilbert space V , a map

T : V → R is linear if:

T (αx+ βy) = αT (x) + β T (y) for all x, y ∈ V, α, β ∈ R.

Continuity is easy to verify for linear maps: a linear map T is continuous if and only if T

is bounded, meaning that there exists C ∈ R such that

∥T (x)∥ ≤ C∥x∥, for all x ∈ V.

The set of all continuous linear operators on V is known as the dual space of V , and often

referred to as V ⋆. The Riesz representation theorem states that if V is a Hilbert space,
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then V and V ⋆ are isometrically isomorphic. Equivalently, this means that for any linear

operator T : V → R, there exists a unique xT ∈ V such that

⟨x, xT ⟩ = T (x) for all x ∈ V.

4.1.2 Reproducing kernel Hilbert spaces and the MMD

Let X be an arbitary set and H be a Hilbert space of real functions on X . For a point

x ∈ X , the evaluation functional Lx : H → R is defined by

Lx(f) = f(x).

If Lx is a continuous functional for all x ∈ X , we say that H is a reproducing kernel Hilbert

space (RKHS) (Schölkopf et al., 2018; Aronszajn, 1950). Suppose H is a reproducing kernel

Hilbert space, then for each x ∈ X , Lx is linear and continuous, and the Riesz representa-

tion theorem implies that there exists a unique kx ∈ H such that

Lx(f) = ⟨f, kx⟩H.

Since kx ∈ H, we can write

kx(y) = Ly(kx) = ⟨kx, ky⟩H.

This is used to define the reproducing kernel k of H as k(x, y) = ⟨kx, ky⟩H. We will some-

times write kH to emphasize the dependence of the kernel on the Hilbert space. One can

note that the functions kx and ky above can be recovered as the kernel fixed at a single

point, that is kx = k(x, ·) ∈ H, and ky = k(y, ·) ∈ H. This is where the reproducing property

comes from, as we see that k ‘reproduces’ itself:

k(x, y) = ⟨k(x, ·), k(y, ·)⟩H.
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In the previous paragraphs, we began with a Hilbert space of functions whose evalua-

tion functional was continuous and obtained a reproducing kernel for this space. Going in

the opposite direction is also possible; that is beginning with a positive definite kernel on

a set and constructing a Hilbert space of functions, this is known as the Moore-Aronszajn

theorem (Aronszajn, 1950). To begin, we define a function k : X × X → R to be a pos-

itive definite kernel if it is symmetric and positive definite1: for any {x1, . . . , xn} ∈ X ,

{c1, . . . , cn} ∈ R, we have that

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0.

We will often use kernel as a shorthand for positive definite kernel. Given a kernel k on

X , we can construct a RKHS of functions Hk through the following steps:

(i) Construct a vector space of real-valued functions on X of the form {k(x, ·) : x ∈ X}

(ii) Equip this space with an inner product given by ⟨k(x, ·), k(y, ·)⟩Hk
= k(x, y)

(iii) Take the completion of the vector space with respect to the inner product ⟨·, ·⟩Hk

The Hilbert space we obtain at the end of step (iii) is the reproducing kernel Hilbert space

for k.

It is common to introduce the notation φ(x) := k(x, ·), where φ : X → H is often called

the feature map, and φ(x) is understood as the embedding of x in H. One can also embed

probability distributions on X in H. Given a probability distribution µ on X , one can

define the embedding of µ, Φ(µ) ∈ H as

Φ(µ) = E
X∼µ

[φ(X)] =

∫
X
φ(x)dµ(x),

1We remark that the definition of positive definite is not consistent across the literature. We follow the
convention of the kernel methods community, and define a function to be strictly positive definite if the
inequality is strict unless c1 = · · · = cn = 0. In the linear algebra and optimization communities however,
this is referred to as positive definite, and the definition provided is referred to as positive semidefinite.
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where the integral taken is a Bochner integral2 , as we are integrating over H-valued

functions. The embeddings of measures into H allow one to easily compute integrals, as

one can show using the Riesz representation theorem that for f ∈ H, one has

∫
X
fdµ = ⟨f,Φ(µ)⟩Hk

.

These embeddings also allow us to define metrics on X and P(X ) by looking at the

Hilbert space distance of their embeddings. We will denote the distance on X that this

induces as ρ, so that we have

ρk(x, y) = ∥φ(x)− φ(y)∥Hk
,

for x, y ∈ X . We can perform the same construction to construct a metric on P(X ) using

Φ, which gives us the definition of the MMD (Gretton et al., 2012a):

MMD(k)(µ, ν) = ∥Φ(µ)− Φ(ν)∥Hk
.

The MMD can also be seen as arising from a lifting of kernels on X into kernels on P(X )

(Guilbart, 1979). Given a kernel k on X , define K(µ, ν) for µ, ν ∈ P(X ) as

K(µ, ν) = ⟨Φ(µ),Φ(ν)⟩Hk
=

∫
X×X

k(x, y) d(µ⊗ ν)(x, y).

It is immediate that K retains all properties of being a positive definite kernel as it arises

from the inner product ⟨·, ·⟩Hk
. The MMD can then be seen as the metric ρK on P(X ). We

remark that the MMD with K allows one to metrize P(P(X )), but we do not need this

in this thesis.
2The Bochner integral is the extension of the Lebesgue integral to functions which take values in arbi-

trary Banach spaces, defined in the same way as the limit of simple functions.
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One can also show that the MMD is an integral probability metric, as defined in sub-

section 2.1.3, since we can show that

MMD(k)(µ, ν) = sup
f∈Hk:∥f∥Hk

≤1

∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣ .
To see that this corresponds to the MMD as defined earlier, one can write out

sup
f∈Hk:∥f∥Hk

≤1

∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣ = sup
f∈Hk:∥f∥Hk

≤1

|⟨f,Φ(µ)⟩Hk
− ⟨f,Φ(ν)⟩Hk

|

= sup
f∈Hk:∥f∥Hk

≤1

|⟨f,Φ(µ)− Φ(ν)⟩Hk
|

= ∥Φ(µ)− Φ(ν)∥Hk
,

where we used the following fact for general Hilbert spaces H: supx:∥x∥H≤1⟨x, y⟩H = ∥y∥H,

which follows from the Cauchy-Schwarz inequality.

4.1.3 The energy distance and semimetrics of negative type

A semimetric is a distance function which respects all metric axioms save for the triangle

inequality. A semimetric space (X , ρ) is of negative type if for all x1, . . . , xn ∈ X , c1, . . . , cn ∈

R such that
∑n

i=1 ci = 0, we have

n∑
i=1

n∑
j=1

cicjρ(xi, xj) ≤ 0.

Given a semimetric of negative type ρ on X , we can define a distance on P(X ) known

as the energy distance, defined as

E(ρ)(µ, ν) = E
x∼µ,y∼ν

[d(x, y)]− 1

2

(
E

x1,x2∼µ
[d(x1, x2)] + E

y1,y2∼ν
[d(y1, y2)]

)
.

The negative type of ρ is what guarantees that we have E(ρ)(µ, ν) ≥ 0 for all µ, ν. Metrics

of negative type have a connection to positive definite kernels (Sejdinovic et al., 2013), in
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the sense that each kernel k induces a semimetric of negative type ρk through ρk(x, y) =

k(x, x) + k(y, y) − 2k(x, y). Conversely, a semimetric of negative type ρ induces a family

of positive definite kernels Kρ parametrised by a chosen base point x0 ∈ X :

Kρ =

{
1

2
(ρ(x, x0) + ρ(x′, x0)− ρ(x, x′)) : x0 ∈ X

}
.

The relationship is symmetric, so that each kernel k ∈ Kρ has ρ as its induced semimet-

ric. With this symmetry in mind, we call a kernel k and a semimetric of negative type an

equivalent pair if they induce one another through the above construction. This equiva-

lence does not only live in X however, as the following proposition shows that it lifts into

P(X ) as well.

Proposition 4.1.1. Let (k, ρ) be an equivalent pair, and let µ, ν ∈ P(X ). Then we have the

equivalence

MMD2(k)(µ, ν) = E(ρ)(µ, ν).

4.2 Behavioural kernels on Markov decision processes

Given an MDP M = (X ,A,P ,R, γ), the state similarity metrics encountered can be de-

scribed by the following form: for x, y ∈ X

d(x, y) = d1(x, y) + γd2(d)(P(x),P(y)),

where d1 is a distance measure on X , so that d1(x, y) represents the immediate behavioural

distance of the states x and y, and d2 lifts a distance on X into a distance on P(X ), so that

d2(d)(P(x),P(y)) captures the long-term behavioural distance of the states.

In this chapter we take a similar approach, except rather than studying metrics, which

measure the distance between two states, we will study positive definite kernels, which

measure the similarity between two states (Aronszajn, 1950).
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Extending this idea, we can define a behavioural similarity kernel on M to take a

similar form. It should be the sum of a base kernel k1 which measures the immediate

behavioural similarity between two states, and a discounted mapping k2 which lifts the

kernel k into a kernel on P(X ) which measures the long-term behavioural similarity of the

states. Putting these together into a formular, we have

k(x, y) = k1(x, y) + γk2(k)(P(x),P(y)).

A possible candidate for the immediate similarity is 1 minus the immediate distance in

rewards, that is 1−|rπx−rπy |, which is positive as we have 1-boundedness of the rewards. To

measure the similarity of the transition kernels, we can use the method of lifting kernels

into kernels onto probability distributions described by Guilbart (1979). Putting these

together, we can look for a kernel of the form

k(x, y) =
(
1− |rπx − rπy |

)
+ γ E

x′∼Pπ
x ,y

′∼Pπ
y

[k(x′, y′)].

To see whether such a kernel actually exists, we can construct a sequence of iterates on

the space of kernels.

We first discuss some preliminaries regarding the set of kernels on a space. Let K (X )

be the set of positive definite kernels on X . We have that K (X ) is a subset of B(X × X ),

the set of real bounded functions on X × X , which is complete under the ∥ · ∥∞ norm.

Hence to show that K (X ) is complete, it suffices to show that it is closed in B(X × X ).

We can now consider a sequence {ki}i≥1 in K (X ) which converges to k ∈ B(X × X ) in

∥ · ∥∞ and show that k ∈ K (X ). This is equivalent to showing that k is both symmetric

and positive definite, which follows immediately from the fact that each ki is and the

convergence is uniform. Hence K (X ) is closed.

We can now define an operator T π
K : K (X ) → K (X ) as

T π
K(k)(x, y) =

(
1− |rπx − rπy |

)
+ γ E

x′∼Pπ
x ,y

′∼Pπ
y

[k(x′, y′)].
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The fact that T π
K indeed maps K (X ) to K (X ) follows from the previous paragraph de-

scribing that each operator is a kernel, and that the sum of two kernels is a kernel (Aron-

szajn, 1950). We can also see that T π
K is a contraction with modulus γ in ∥ · ∥∞, as for

k, k′ ∈ K (X ) we have that

∥T π
K(k)− T π

K(k
′)∥∞ = sup

(x,y)∈X×X
|T π

K(k)(x, y)− T π
K(k

′)(x, y)|

= γ sup
(x,y)∈X×X

∣∣∣∣∫
X×X

k d(Pπ
x ⊗ Pπ

y )−
∫
X×X

k′ d(Pπ
x ⊗ Pπ

y )

∣∣∣∣
= γ sup

(x,y)∈X×X

∣∣∣∣∫
X×X

(k − k′) d(Pπ
x ⊗ Pπ

y )

∣∣∣∣
≤ γ sup

(x,y)∈X×X

∣∣∣∣∫
X×X

d(Px ⊗ Py)

∣∣∣∣ ||k − k′||∞

= γ||k − k′||∞.

Hence we have that T π
K is a contraction. Combining this with the fact that K (X ) is com-

plete, we can use Banach’s fixed point theorem to see the existence of a unique fixed point

kπ satisfying kπ = T π
k (k

π).

Having a kernel on our MDP now gives us an RKHS of functions on the MDP, as

well as an embedding of each state into said RKHS given by φ(x) = kπ(x, ·), for x ∈ X .

As the kernel was built using a behavioural similarity recurrence, one can ask whether

the Hilbert space distance between embeddings corresponds in any way to a behavioural

distance between states. For states x and y, we can define a distance ρπ as the Hilbert

space distance between their embeddings:

ρπ(x, y) = ∥φ(x)− φ(y)∥Hkπ
.
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We refer to ρπ as the kernel similarity metric. The squared Hilbert space norm can let us

expand the above distance:

ρ2π(x, y) = ∥φ(x)− φ(y)∥2Hkπ

= ⟨φ(x)− φ(y), φ(x)− φ(y)⟩Hkπ

= ⟨φ(x), φ(x)⟩Hkπ
+ ⟨φ(y), φ(y)⟩Hkπ

− 2⟨φ(x), φ(y)⟩Hkπ

= kπ(x, x) + kπ(y, y)− 2kπ(x, y)

= |rπx − rπy |+ γ⟨Φ(Pπ
x ,Pπ

x )⟩Hkπ
+ γ⟨Φ(Pπ

y ,Pπ
y )⟩Hkπ

− 2γ⟨Φ(Pπ
x ,Pπ

y )⟩Hkπ

= |rπx − rπy |+ γMMD2(kπ)(Pπ
x ,Pπ

y ). (4.0)

We can now see that the squared Hilbert space distance takes a familiar form to the be-

havioural metrics considered previously, using the squared MMD distance as the distance

measure on the transition distributions.

4.2.1 Equivalence with reduced MICo distance

We now present a theorem that unifies the reduced MICo distance of section 3.3 with the

kernel similarity metric as defined above. This is a significant result, as it demonstrates

that ΠUπ exhibits a rich Hilbert space structure, while it had few known properties with-

out this equivalence.

Theorem 4.2.1. For any x, y ∈ X , we have that

ρ2π(x, y) = ΠUπ(x, y).

Proof. To begin, we will make use of the sequences (kn)n≥0, (Un)n≥0 defined by kn ≡ 0,

kn+1 = T π
K(kn), Un ≡ 0, Un+1 = T π

M(Un). Since both T π
K and T π

M are contractions, we know

that kn → kπ and Un → Uπ uniformly. To prove the statement, we will show that for all
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n ≥ 0 and x, y ∈ X , we have that

kn(x, x) + kn(y, y)− 2kn(x, y) = Un(x, y)−
1

2
(Un(x, x) + Un(y, y)) .

This combined with the fact that both sequences converge uniformly will allow us to take

limits and finish the proof.

We will first begin with a necessary technical result, and show that for any measures

µ, ν, and n ≥ 0, we have that

E
x1,x2∼µ
y1,y2∼ν

[kn(x1, x2) + kn(y1, y2)− 2kn(x1, y1)] = E
x1,x2∼µ
y1,y2∼ν

[
Un(x1, y1)−

1

2
(Un(x1, x2) + Un(y1, y2))

]
.

We proceed to show this by induction. The base case is straightforward, as both sides are

identically zero. We can now assume the induction hypothesis, and can write out

E
x1,x2∼µ
y1,y2∼ν

[kn+1(x1, x2) + kn+1(y1, y2)− 2kn+1(x1, y1)]

= E
x1,x2∼µ
y1,y2∼ν


(
|rπx1

− rπy1| −
1

2
(|rπx1

− rπx2
|+ |rπy1 − rπy2|)

)
+ E

x′
1∼Pπ

x1
x′
2∼Pπ

x2
y′1∼Pπ

y1
y′2∼Pπ

y2

[kn(x
′
1, x

′
2) + kn(y

′
1, y

′
2)− 2kn(x

′
1, y

′
1)]


= E

x1,x2∼µ
y1,y2∼ν

(|rπx1
− rπy1| −

1

2
(|rπx1

− rπx2
|+ |rπy1 − rπy2|)

)
+ E

x′
1,x

′
2∼Pπ

x2
y′1,y

′
2∼Pπ

y2

[kn(x
′
1, x

′
2) + kn(y

′
1, y

′
2)− 2kn(x

′
1, y

′
1)]


= E

x1,x2∼µ
y1,y2∼ν

(|rπx1
− rπy1| −

1

2
(|rπx1

− rπx2
|+ |rπy1 − rπy2|)

)
+ E

x′
1,x

′
2∼Pπ

x2
y′1,y

′
2∼Pπ

y2

[
Un(x

′
1, y

′
1)−

1

2
(Un(x

′
1, x

′
2) + Un(y

′
1, y

′
2))

]
= E

x1,x2∼µ
y1,y2∼ν

[
Un+1(x1, y1)−

1

2
(Un+1(x1, x2) + Un+1(y1, y2)

]
.
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We can now conclude that for all n,

kn(x, x) + kn(y, y)− 2kn(x, y) = Un(x, y)−
1

2
(Un(x, x) + Un(y, y)),

as we can write out

kn(x, x) + kn(y, y)− 2kn(x, y) = |rπx − rπy |+ γ E
x1,x2∼Pπ

x
y1,y2∼Pπ

y

[kn(x1, x2) + kn(y1, y2)− 2kn(x1, y1)]

= |rπx − rπy |+ γ E
x1,x2∼Pπ

x
y1,y2∼Pπ

y

[
Un(x1, y1)−

1

2
(Un(x1, x2) + Un(y1, y2))

]

= Un(x, y)−
1

2
(Un(x, x) + Un(y, y)).

Since (kn)n≥0 and (Un)n≥0 both converge uniformly, we can take limits and conclude that

ρ2π(x, y) = kπ(x, x) + kπ(y, y)− 2kπ(x, y) = Uπ(x, y)− 1

2
(Uπ(x, x) + Uπ(y, y)) = ΠUπ(x, y).

4.3 Alternative parametrisations of the reduced MICo

We recall from subsection 3.4.2 that the parametrisation of the reduced MICo in the neural

network took a peculiar form, as we used

Uω(x, y) =
∥ϕω(x)∥+ ∥ϕω(y)∥

2
+ β θ(ϕω(x), ϕω(y)),

so that ΠUω ≈ βθ(ϕω(x), ϕω(y)). Although this parametrisation achieves its goal of rep-

resenting the reduced MICo distance, it lacks interpretability and its motivation may be

opaque. Using the equivalence from Theorem 4.2.1, we can propose more transparent

and intuitive parametrisations.
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Following the notation in subsection 3.4.2, we wish to approximate the kernel kπ using

a parametrised kω. To represent kω in the neural network, we can use one of the commonly

used kernels on Rd (Shawe-Taylor and Cristianini, 2004), such as:

• Linear kernel: kω(x, y) = ⟨ϕω(x), ϕω(y)⟩

• Polynomial kernel: kω(x, y) = (⟨ϕω(x), ϕω(y)⟩+ C)n, where C and n are hyperpa-

rameters

• Gaussian kernel: kω(x, y) = e−
∥ϕω(x)−ϕω(y)∥2

2σ2 , where σ is a hyperparameter,

to name a few. Once a parametrisation kω is chosen, one can learn kω ≈ kπ using the

following loss:

LKernel(ω) = E
⟨x,rx,x′⟩,⟨y,ry ,y′⟩∼D

[(
kω(x, y)−

(
1− |rx − ry|+ γkω̄(x

′, y′)
))2

]
,

which can then be incorporated into the loss of any agent in the same process done in

subsection 3.4.2. We then have that the equivalent distance to kω, dω, satisfies

ΠUπ(x, y) = ρ2π(x, y) ≈ dω(x, y).

This is a much more flexible parametrisation than the one presented in subsection 3.4.2,

importantly any distance can be used rather than the angular distance (to choose a given

distance, one must simply choose its equivalent kernel). We hypothesize that different

kernels will be better across different MDPs and environments.

4.4 Discussion and future work

In this chapter, we introduce a novel perspective on state similarity metric learning; rather

than directly learning distance functions, we learned similarity functions instead. This

allowed us to leverage theory from reproducing kernel Hilbert spaces, and prove equiv-

alence to the reduced MICo distance we introduced in Chapter 3.
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The first direction for future work is empirical, as section 4.3 provides many interest-

ing directions to explore. This direction is interesting for a number of reasons: firstly,

subsection 3.4.3 demonstrates very strong performance, and it is interesting to see if one

of the new parametrisations can achieve even greater state of the art performance. Sec-

ondly, it can be interesting to find which kernel parametrisation is best for various MDPs,

depending on the properties. In particular, different kernels can exploit various symme-

tries or invariances in the underlying environment. The choice of what kernel to use is

known as the kernel choice problem, and has been studied extensively in machine learning

(Muandet et al., 2017; Sriperumbudur et al., 2009a; Gretton et al., 2012b).

A second direction for future work is one of a more theoretical nature. When learning

a state metric d to approximate the distance between embeddings ∥ϕ(x) − ϕ(y)∥, we are

approximating d using a Hilbert space distance (the Euclidean distance). As this chapter

shows, ΠUπ is a squared Hilbert space distance. On the other hand, the Kantorovich is

not a Hilbertian metric (Gehér et al., 2021), and so in particular the bisimulation metric

dπ∼ is not Hilbertian, meaning there does not exist a Hilbert space with embedding φ such

that

dπ∼(x, y) = ∥φ(x)− φ(y)∥H.

The direction for research is to investigate what effects this phenomenon has on the

learnability of the metrics, does it imply that naturally ΠUπ can be approximated in Eu-

clidean space better (i.e. with less distortion) than dπ∼? In this vein, a number of previous

works have learnt dπ∼ in neural networks (Castro, 2020; Zhang et al., 2021; Kemertas and

Aumentado-Armstrong, 2021; Kemertas and Jepson, 2022), however none have studied

the quality of the learnt metric, through distortion or other criteria.
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Chapter 5

A Distributional Perspective

In the behavioural distances seen thus far, the immediate distance between two states x

and y is their distance in expected rewards, that is |E [Rx]− E [Ry]| (we are intentionally

vague about whether we are considering a single action, Ra, or for a given policy Rπ,

since this discussion holds for both settings). In the convergence theorems we have seen,

we require an assumption on the rewards from a state being deterministic, such as in

Theorem 3.2.6. We will now see that this is due to a deeper issue regarding sampling the

absolute difference of expectations of random variables.

Let X and Y be two real-valued random variables on a common probability space

(Ω,F ,P). We are interested in estimating the quantity |E[X]− E[Y ]|, given samples {x1, . . . , xn}

from X and {y1, . . . , yn} from Y . A common estimator for this is

1

n2

∣∣∣∣∣
n∑

i=1

n∑
j=1

(xi − yj)

∣∣∣∣∣ .
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This estimator is consistent, and of near-minimal variance, however it is biased in general:

E

∣∣∣∣∣ 1n2

n∑
i=1

n∑
j=1

(xi − yj)

∣∣∣∣∣ ≥
∣∣∣∣∣E
(

1

n2

n∑
i=1

n∑
j=1

(xi − yj)

)∣∣∣∣∣
=

1

n2

∣∣∣∣∣
n∑

i=1

n∑
j=1

(E(X)− E(Y ))

∣∣∣∣∣
= |E(X)− E(Y )| ,

where we used Jensen’s inequality. This is not sufficient to show bias however, since the

inequality is not strict. To do this, we can use the fact that Jensen’s inequality attains

equality under two possible conditions: the outer function is affine, or the inner random

variable is almost surely constant. In this case, the outer function z 7→ |z| is not affine,

so we have equality if and only if X and Y are both almost surely constant. This is now

sufficient to answer our question regarding the bias: this estimator is unbiased if X and

Y are both almost surely constant, and biased otherwise. Although this analysis was

done for a particular estimator, this phenomenon is true in general: for general random

variables X and Y , there is no unbiased estimator for E[|X − Y |] (Elandt, 1961).

The above paragraph provides us another view of why we required the reward to only

depend on the state for Theorem 3.2.6 - in this case, Rx and Ry are almost surely constant

random variables, and thus |E[Rx]−E[Ry]| can be estimated without bias. We recall that

for stochastic approximation, having an unbiased estimator of our target is imperative

(Bertsekas and Tsitsiklis, 1996). With this in mind, it seems that the assumptions made in

Theorem 3.2.6 are essentially the best we can hope to do, since Elandt (1961) shows that it

is not possible for general rewards.
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5.1 A formulation for general rewards

Instead of considering assumptions under which we can learn |E[Rx] − E[Ry]|, we can

ask what we instead learn in the general case. That is, if we perform the online updates

as in Theorem 3.2.6, do we converge to a distance, and if so to which?

Given samples x, y from random variables X and Y , the value |x − y| is an unbiased

estimate of E[|X − Y |]. With this in mind, we will now consider an adaptation of the

theory from Chapters 2 and 3, but using E[|Rx −Ry|] instead of |E[Rx]− E[Ry]|.

We begin with an adaptation of the MICo operator. Let us define T π
Ū
: Mdiff → Mdiff

as

T π
Ū (U)(x, y) = E

[
|Rπ

x −Rπ
y |
]
+ γ dLK(U)(Pπ

x ,Pπ
y ).

It is a straightforward adaptation of the proof of Theorem 3.2.4 to see that T π
Ū

has a unique

fixed point, Ūπ.

From Jensen’s inequality, we know that |E[X]−E[Y ]| ≤ E[|X−Y |], and so in particular

we have thatUπ(x, y) ≤ Ūπ(x, y) for all x, y ∈ X . From this we can see that for any x, y ∈ X

we have |V π(x)− V π(y)| ≤ Ūπ(x, y), since

|V π(x)− V π(y)| ≤ Uπ(x, y) ≤ Ūπ(x, y).

However, we can say more than this. Let ηπ(x) be the distribution of
∑

t≥0 γ
tRt under π,

given that X0 = x. Then ηπ(x) is a measure on R, with expected value V π(x). ηπ(x) is

known as the return distribution, and is a central concept in distributional reinforcement

learning (Bellemare et al., 2017, 2022).

Using Jensen’s inequality, we can see that

|V π(x)− V π(y)| ≤ E
Gπ(x)∼ηπ(x)
Gπ(y)∼ηπ(y)

[|Gπ(x)−Gπ(y)|] .

We now show that the quantity on the right hand side is also bounded by Ūπ.
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Theorem 5.1.1. For any x, y ∈ X , we have

E
Gπ(x)∼ηπ(x)
Gπ(y)∼ηπ(y)

[|Gπ(x)−Gπ(y)|] ≤ Ūπ(x, y).

Proof. To prove this, we will first review some necessary concepts in distributional re-

inforcement learning. We will let PX be the set of return distribution functions which

assign a measure over R for each x ∈ X . The supremum Kantorovich distance is used to

metrize PX , and is defined as

W̄1(η, η
′) = sup

x∈X
W1(η(x), η

′(x)),

for η, η′ ∈ PX . Using this, the metric space (PX , W̄1) is complete. The distributional

Bellman operator (Rowland et al., 2018; Bellemare et al., 2022) is the map T π : PX → PX

given by

(T πη)(x) = Eπ[(bR,γ)#η(X1)
∣∣X0 = x],

where br,γ(x) = r + γ x. T π is a contraction with modulus γ in (PX , W̄1), hence one can

apply Banach’s fixed point theorem and refer to the unique fixed point as ηπ. Moreover

for any η0 ∈ PX , one can define a sequence as ηk+1 = T πηk, which will converge to ηπ.

With this in mind, let {ηk}k≥0 and {Ūk}≥0 be sequences defined by η0(x) = δ0 for all

x ∈ X , Ū0(x, y) = 0 for all x, y ∈ X , ηk+1 = T πηk, and Ūk+1 = T π
Ū
Ūk. Then we know that as

k → ∞, we have that both ηk → ηπ and Ūk → Ūπ.

We will now show by induction that for all k, we have that for any x, y ∈ X ,

E
Gk(x)∼ηk(x),Gk(y)∼ηk(y)

[
|Gk(x)−Gk(y)|

]
≤ Ūk(x, y).

Let us fix x, y ∈ X arbitrarily. In the base case, we have that η0(x) = η0(y) = δ0, and

Gk(x) and Gk(y) are both 0 almost surely, so the left hand side is 0. Similarly, the right

hand side is 0 by definition of Ū0.
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Let us write (x,A,Rx, X
′) and (y, A,Ry, Y

′) to be independent sample transitions from

x and y. We use the fact that for all k, Rx + γGk(X ′) has distribution ηk+1(x), and Ry +

γGk(Y ′) has distribution ηk+1(y) (Bellemare et al., 2022). We can write out

E
Gk+1(x)∼ηk+1(x)

Gk+1(y)∼ηk+1(y)

[
|Gk(x)−Gk(y)|

]
= E

Rx+γGk(X′)∼T πηk(x)

Ry+γGk(Y ′)∼T πηk(y)

[ ∣∣(Rx + γGk(X ′))− (Ry + γGk(Y ′))
∣∣ ]

≤ E
Rx+γGk(X′)∼T πηk(x)

Ry+γGk(Y ′)∼T πηk(y)

[
|Rx −Ry|+ γ

∣∣Gk(X ′)−Gk(Y ′)
∣∣ ]

= Eπ [|Rx −Ry|] + γ E
x′∼Pπ

x ,y
′∼Pπ

y

 E
Gk(X′)∼ηk(x

′)
Gk(Y ′)∼ηk(y

′)

[ ∣∣Gk(X ′)−Gk(Y ′)
∣∣ ]


≤ Eπ [|Rx −Ry|] + E
x′∼Pπ

x ,y
′∼Pπ

y

[
Ūk(x

′, y′)
]

= Ūk+1(x, y),

where we used the induction hypothesis in the second to last line.

Since convergence is uniform, we can take k → ∞ to see that

E
Gπ(x)∼ηπ(x),Gπ(y)∼ηπ(y)

[
|Gπ(x)−Gπ(y)|

]
≤ Ūπ(x, y).

We now show that this is a novel property of Ūπ, and it does not hold for the original

MICo distance Uπ.

Proposition 5.1.2. In general, we do not have that

E
Gπ(x)∼ηπ(x),Gπ(y)∼ηπ(y)

[
|Gπ(x)−Gπ(y)|

]
≤ Uπ(x, y)

for all states x and y.

Proof. Let us consider an MDP with two states and a single action, X = {x, y}, A = {a},

Pa
x(x) = 1, Pa

y (y) = 1, PR(·
∣∣x, a) = δ0,PR(·

∣∣ y, a) = 1
2
(δ−1 + δ1), and to simplify the

55



analysis let us take γ = 0. As there is a single action, there exists a single policy π. As

the discount factor is 0, the return distribution at a state is simply the immediate reward

distribution, so we have that ηπ(x) = δ0, ηπ(y) = 1
2
(δ−1 + δ1). It is straightforward to see

that V π(x) = V π(y) = 0. Moreover, since we have rπx = rπy = 0 and both states transition

to themselves with probability 1, we see that Uπ(x, y) = 0. However, we can calculate that

E
Gπ(x)∼ηπ(x),Gπ(y)∼ηπ(y)

[
|Gπ(x)−Gπ(y)|

]
=

1

2
(|1|+ | − 1|) = 1 > 0 = Uπ(x, y).

We now show that what we claimed at the beginning of this section is true, that is that

when following the update scheme from Theorem 3.2.6, we converge to Ūπ in general

settings. This indicates that this is not necessarily a new distance, but instead the one

which naturally arises during the learning procedure.

Theorem 5.1.3. Let M = (X ,A,P ,R, γ) be a Markov decision process, and π be any policy on

M . Let (Xk, Ak, Rk, X
′
k)k≥0 and (Yk, A

′
k, R

′
k, Y

′
k)k≥0 be two sequences of transitions in M follow-

ing π. Moreover, let (αk)k≥0 be a sequence of stepsizes satisfying the Robbins-Monro conditions.

Let (Uk)k≥0 be a sequence of estimates constructed by choosing U0 arbitrarily, and setting

Uk+1(Xk, Yk) = (1− αk)Uk(Xk, Yk) + αk (|Rk −R′
k|+ γUk(X

′
k, Y

′
k))

Uk+1(x, y) = Uk(x, y) if (x, y) ̸= (Xk, Yk).

Then if each pair of states is sampled infinitely often, we have that Uk → Uπ with probability 1.

Proof. The result mainly follows from the proof of Theorem 3.2.6, it only remains to show

that |Rk − R′
k| is an unbiased estimate of E[|Rπ

XK
− Rπ

Yk
|] for any rewards. But this is

straightforward to see as

E[|Rk −R′
k|] = E[|Rk −R′

k|
∣∣Xk, Yk]

= E[|Rπ
Xk

−Rπ
Yk
|],
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as we have Ak ∼ π(·|Xk), A′
k ∼ π(·|Yk), so that Rk ∼ Rπ

Xk
, R′

k ∼ Rπ
Yk

.

5.2 Discussion and future work

In this chapter, we introduce a theory in which we replace the difference in expected

rewards with the expected absolute distance in rewards. We then proved that this pro-

vided us an upper bound between the expected absolute difference of return distribu-

tions, which was not satisfied by Uπ. Most importantly, we prove that when using the

update scheme used to learn Uπ, we converge to Ūπ in general settings. This points to Ūπ

being the more natural distance than Uπ, it is what is being learnt when we do not have

assumptions on the environment. We now highlight two interesting directions for future

work.

Firstly, there is an opportunity to critically reexamine the current literature. A number

of papers (Castro et al., 2021; Zhang et al., 2021; Kemertas and Aumentado-Armstrong,

2021; Kemertas and Jepson, 2022) have considered learning bisimulation metrics in en-

vironments where the reward is stochastic, but their theories consider the difference in

expected rewards, that is |E[Rπ
x]− E[Rπ

y ]|. However, the proofs in this chapter can be ap-

plied to show that in all of these cases, the distance being learned is instead E[|Rπ
x −Rπ

y |].

It is of interest to see how this affects the theory presented in these papers, in order to

reduce the theory-practice gap. Related to this, it would be interesting to see how the rep-

resentations differ when considering E[|Rπ
x −Rπ

y |] as compared to |E[Rπ
x] − E[Rπ

y ]|. This

can be done theoretically (i.e. by studying how generalization properties of one compares

to the other), or done empirically, which would need to be done in small-scale environ-

ments where both can be learnt exactly.

Secondly, Theorem 5.1.1 is the first theorem in literature (at least known to the author)

which provides a risk-sensitive connection to state-similarity metrics (where risk-sensitive

indicates that we are considering more than just the means of the return distributions ηπ).

Distributional approaches to machine learning have been of great interest in recent years
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(Bellemare et al., 2017; Dabney et al., 2018b; Bellemare et al., 2022), and have provided

state of the art results in empirical settings (Dabney et al., 2018a; Hessel et al., 2018). It

would be very interesting to see if Ūπ has any relationships to quantities of interest in

distributional RL literature (such as the Kantorovich or Cramér distance between return

distributions), or if concepts from distributional literature can be leveraged to produce

new distances.
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Chapter 6

A unifying framework

In the previous chapters, we have seen a number of different behavioural metrics on state

spaces, with varying degrees of relation to one another. With so many variations, it may

be difficult to choose which distance to use, as well as intuitively understand how two

differ.

In this chapter, we present a framework through which all the previous metrics con-

sidered can be seen as arising from. This framework can be seen as an extension of the

work of Ferns and Precup (2014), where they proved that the classical bisimulation metric

in fact corresponds to the optimal value function of a particular MDP. We expand upon

this, and show that all of the considered metrics can be constructed in the same fashion.

Given an MDP M = (X ,A,P ,R, γ), there are a number of ways one can define an

auxiliary MDP M̃ = (X̃ , Ã, P̃ , R̃, γ). We will always take X̃ = X × X , and will always

have P̃ be a coupling of P with itself (whether we take couplings of transitions with the

same action or with different actions depends on whether Ã is equal to A or A×A). Given

a coupling λ, we will write the policy (optimal) value function for the auxiliary MDP as

Ṽ π
λ (Ṽ ∗

λ ), when the other parameters of the auxiliary MDP are known.

We then discuss convergence of learning various metrics under changing policies, and

present a theorem on when this convergence occurs. Using the auxiliary MDP framework

presented, we then prove that this convergence indeed occurs for all metrics considered.
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6.1 State similarity metrics as value functions

We now begin an analysis of different auxiliary MDPs, and for each construction, we

follow a similar recipe. First, we will choose the action space and the reward function,

and we choose a set of couplings within with the transition distribution will live. We

then consider two couplings, the independent coupling and the optimal coupling, which

induce two different MDPs. We then consider the value functions of these MDPs (either

optimal or policy), which in turn induce a distance on the original MDP.

6.1.1 Maximal action metrics

We will first take Ã = A and look at transition functions of the form P̃a
(x,y) ∈ Λ(Pa

x ,Pa
y ). We

take the reward function to be R̃a(x, y) = |rax − ray |. We now consider the two couplings:

1. Independent coupling: One can take P̃a
(x,y) to be the product distribution Pa

x × Pa
y .

The optimal value function Ṽ ∗ can then be derived as

Ṽ ∗((x, y)) = max
a∈A

(
R̃a(x, y) + γ E

(x′,y′)∼P̃a
(x,y)

[
Ṽ ∗((x′, y′))

])

= max
a∈A

(
|rax − ray |+ γ E

x′∼Pa
x ,y

′∼Pa
y

[
Ṽ ∗((x′, y′))

])
.

We can identify this as a distance U∗, written as

U∗(x, y) = max
a∈A

(
|rax − ray |+ γ dLK(Pa

x ,Pa
y )
)
.

This can be seen as a ‘MICo’-like approach to the classical bisimulation, we take

the maximum across all actions, but considering the Łukaszyk–Karmowski distance

rather than the Kantorovich metric.

2. Optimal coupling: One can look at the coupling λ which minimizes Ṽ ∗, formally

that is λ = argminλ∈Λ(Pa
x ,Pa

y )
Ṽ ∗
λ . This was the setting considered in Ferns and Pre-

cup (2014). In this case, the auxiliary optimal value function Ṽ ∗
λ corresponds to the
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bisimulation metric d∼ in the original MDP, as

Ṽ ∗((x, y)) = d∼(x, y) = max
a∈A

(
|rax − ray |+ γW(d∗)(Pa

x ,Pa
y )

)
.

These two distances can be related to value functions in the original MDP through the

following proposition:

Proposition 6.1.1. For any x, y ∈ X , we have that

|V ∗(x)− V ∗(y)| ≤ d∼(x, y) ≤ U∗(x, y).

Proof. We know from (Ferns et al., 2004) that for any x, y ∈ X we have that

|V ∗(x)− V ∗(y)| ≤ d∼(x, y),

and so it remains to show that we also have d∼(x, y) ≤ U∗(x, y). This can be seen through

induction using the fact that for any random variables X and Y , one has

|E[X]− E[Y ]| ≤ E[|X − Y |].

6.1.2 Action-independent rewards

We now consider the case where Ã = A×A, and we fix a policy π in the original MDP, and

define the auxiliary reward as R̃(a,b)(x, y) = |rπx − rπy |. The subsection name comes from

the fact that R̃ has no dependence on the action (a, b) which was taken, and instead is

fixed from π. Since we are looking at pairs of actions, the transition distributions we will

be looking at are of the form P̃(a,b)
(x,y) ∈ Λ(Pa

x ,Pb
y). We will also be interested in the policy

π̃ on M̃ , which is defined as independently following π in each coordinate: π̃(·, ·|x, y) =

π(·|x)× π(·|y). We can now look at which metrics are produced in this setting.
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• Independent coupling: One can take P̃(a,b)
(x,y) to be the product distribution Pa

x × Pb
y .

The policy value function Ṽ π̃ then corresponds to a distance Uπ on the original MDP

defined as

Ṽ π̃((x, y)) = Uπ(x, y) = |rπx − rπy |+ γdLK(U
π)(Pπ

x ,Pπ
y ).

• Optimal coupling: Similarly to the previous section, one can consider the optimal

coupling λ = argminλ∈Λ(Pa
x ,Pb

y)
Ṽ π̃
λ . In this case, the policy value function Ṽ π̃

λ corre-

sponds to the distance dπ∼ in the original MDP, defined as

Ṽ π̃((x, y)) = dπ∼(x, y) = |rπx − rπy |+ γW(dπ)(Pπ
x ,Pπ

y ).

One can now see that Uπ corresponds to the original MICo distance, and dπ corresponds

to on-policy bisimulation. As we know, these correspond to the policy-value functions

since for any x, y ∈ X ,

|V π(x)− V π(y)| ≤ dπ(x, y) ≤ Uπ(x, y).

6.1.3 Action-dependent rewards

In the previous section, we had the transition functions depend on actions, but the re-

wards did not. One can consider modifying the previous case to the setting where both

depend on actions, so we take P̃(a,b)
(x,y) ∈ Λ(Pa

x ,Pb
y) and R̃(a,b)(x, y) = |rax − rby|. Then for any

policy π on M , one can once again consider the policy π̃ on M̃ which follows π indepen-

dently in each coordinate: π̃(·, ·|x, y) = π(·|x) × π(·|y). An important difference between

the previous subsection is this construction can support any policy π in the original MDP,

while the previous construction only supported the fixed policy which was used in the

construction. We can now see which metrics are induced.

• Independent coupling: One can take P̃(a,b)
(x,y) to be the product distribution Pa

x × Pb
y .

The policy value function Ṽ π̃ then corresponds to a distance Ūπ on the original MDP
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defined as

Ṽ π̃((x, y)) = Ūπ(x, y) = E
rx∼Rπ

x ,ry∼Rπ
y

[
|rx − ry|

]
+ γdLK(Ū

π)(Pπ
x ,Pπ

y ).

• Optimal coupling: One can consider the optimal coupling λ = argminλ∈Λ(Pa
x ,Pb

y)
Ṽ π̃
λ .

In this case, the policy value function Ṽ π̃
λ corresponds to the distance d̄π∼ in the orig-

inal MDP, defined as

Ṽ π̃((x, y)) = d̄π∼(x, y) = E
rx∼Rπ

x ,ry∼Rπ
y

[
|rx − ry|

]
+ γW(d̄π)(Pπ

x ,Pπ
y ).

In this case, Ūπ corresponds to the modified MICo distance introduced in Chapter 5, and

d̄π follows from a similar modification of the on-policy bisimulation metric dπ∼. The con-

nection to the original policy value functions can be seen as a straightforward modifica-

tion of Theorem 5.1.1, for any x, y ∈ X , we have

E
Gπ

x∼ηπ(x),Gπ
y∼ηπ(y)

[
|Gπ

x −Gπ
y |
]
≤ d̄π(x, y) ≤ Ūπ(x, y).

6.2 Convergence under changing policies

Through the previous chapters and previous literature, the convergence analysis of state

similarity metrics has followed a common recipe: fix a policy π, produce an operator for

this policy which is a contraction, and conclude that iterating this operator produces a

fixed point, which is our state similarity metric. This recipe however, is inconsistent with

what is done in practice, where one has a changing policy as the learning progresses. That

is, one may begin learning the metric with a crude, exploratory policy at the beginning

of training, and continue learning the metric using a more refined, greedy policy near the

end of training. The previous convergence results are not sufficient to address this setting.

We will now present a general convergence result regarding learning metrics when

the underlying policy is changing, and prove that a number of metrics considered thus
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far satisfy the conditions required to satisfy this convergence result. The argument behind

the proof of this theorem is an adaptation of the proofs found in section 6.2. of Bertsekas

and Tsitsiklis (1996).

Definition 6.2.1. A sequence of policies (πk)k≥0 converges uniformly to π∗ if we have that

sup
x∈X

∑
a∈A

|πk(a |x)− π∗(a |x)| → 0

as k → ∞.

Theorem 6.2.2. Suppose that X is finite, |R| is almost surely bounded by Rmax, (πk)k≥0 is a

sequence of policies converging uniformly to π∗, and let (V, ∥ · ∥∞) be a space of functions with

the supremum norm. Moreover, for each policy π let F π
d : V → V be a contraction in (V, ∥ · ∥∞)

with fixed point dπ. Suppose that Fd is Lipschitz continuous with constant C in π at π∗, that is

we have

∥F π
d − F π∗

d ∥∞ ≤ C sup
x∈X

∑
a∈A

|π(a |x)− π∗(a |x)| . (6.1)

Then we have that the sequence defined by choosing d0 arbitrarily and setting dk+1 = F πk
d dk

satisfies dk → dπ
∗ as k → ∞.

Proof. Let ε > 0. Then let K > 0 be sufficiently large so that for all k ≥ K, we have

sup
x∈X

∑
a∈A

|πk(a|x)− π∗(a|x)| < ε .
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We first demonstrate that closeness of π to π∗ implies closeness in the sense of supremum

norm of F π
d to F π∗

d :

∥F π
d − F π∗

d ∥∞ ≤ ∥Rπ −Rπ∗∥∞ + γ∥Pπ − Pπ∗∥∞

= sup
x∈X

∣∣∣∣∣∑
a∈A

(π(a|x)− π∗(a|x))Ra
x

∣∣∣∣∣+ γ sup
x∈X

∑
x′∈X

∣∣Pπ
x (x

′)− Pπ∗

x (x′)
∣∣

≤ sup
x∈X

∑
a∈A

|π(a|x)− π∗(a|x)|Rmax + γ sup
x∈X

∑
x′∈X

∣∣∣∣∣∑
a∈A

Pa
x(x

′)π(a|x)− Pa
x(x

′)π∗(a|x)

∣∣∣∣∣
≤ sup

x∈X

∑
a∈A

|π(a|x)− π∗(a|x)|Rmax + γ sup
x∈X

∑
x′∈X

∑
a∈A

|Pa
x(x

′)π(a|x)− Pa
x(x

′)π∗(a|x)|

= sup
x∈X

∑
a∈A

|π(a|x)− π∗(a|x)|Rmax + γ sup
x∈X

∑
x′∈X

∑
a∈A

Pa
x(x

′)|π(a|x)− π∗(a|x)|

= (Rmax + γ) sup
x∈X

∑
a∈A

|π(a|x)− π∗(a|x)| .

Hence, for all k ≥ K, we have ∥F πk
d − F π∗

d ∥∞ ≤ (Rmax + γ)ε. We therefore have

dk+1 = F πk
d dk

=⇒ dk+1 − dπ
∗
= F πk

d dk − dπ
∗

=⇒ dk+1 − dπ
∗
= F πk

d dk − F πk
d dπ

∗
+ F πk

d dπ
∗ − dπ

∗

=⇒ ∥dk+1 − dπ
∗∥∞ ≤ ∥F πk

d dk − F πk
d dπ

∗∥∞ + ∥F πk
d dπ

∗ − dπ
∗∥∞

=⇒ ∥dk+1 − dπ
∗∥∞ ≤ γ∥dk − dπ

∗∥∞ + ∥(F πk
d − F π∗

d )dπ
∗∥∞

=⇒ ∥dk+1 − dπ
∗∥∞ ≤ γ∥dk − dπ

∗∥∞ + (Rmax + γ)ε∥dπ∗∥∞ .

Now letting zk = ∥dk − dπ
∗∥∞, this gives

zk+1 ≤ γzk + (Rmax + γ)ε∥dπ∗∥∞ .
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Taking limit superior on each side, we obtain

lim sup zk ≤ γ lim sup zk + (Rmax + γ)ε∥dπ∗∥ .

Rearranging gives lim sup zk ≤ (1 − γ)−1(Rmax + γ)ε∥dπ∗∥. Since ε > 0 was arbitrary, we

have lim sup zk ≤ 0, but (zk)k≥0 is a non-negative sequence, hence lim zk = 0, as required.

Hence in order to prove that a distance dπ satisfies convergence under changing poli-

cies, it suffices to show that the operator Fd satisfies the Lipschitz condition (5.1). We now

prove that this is indeed the case for the metrics considered thus far.

Theorem 6.2.3. All state similarity metrics introduced in section 6.1 satisfy convergence under

changing policies as described in Theorem 6.2.2.

Proof. As remarked above, it remains to show that each of the distances satisfy the Lip-

schitz condition (5.1). Rather than prove this individually for each distance, we will use

the result from section 6.1, that is, each of these metric’s operator is actually the Bellman

operator T π for an auxiliary MDP M̃ . Therefore, it is sufficient to prove that T π satisfies

(5.1). We can now see this as

∥T π − T π∗∥∞ = sup
x∈X

∣∣∣∣∣Rπ
x + γ

∑
x′∈X

Pπ
x (x

′)−

(
Rπ∗

x + γ
∑
x′∈X

Pπ∗

x (x′)

)∣∣∣∣∣
≤ sup

x∈X

{∣∣Rπ
x −Rπ∗

x

∣∣+ γ

∣∣∣∣∣∑
x′∈X

Pπ
x (x

′)−
∑
x′∈X

Pπ∗

x (x′)

∣∣∣∣∣
}

≤ sup
x∈X

{∑
a∈A

|Ra
x π(a |x)−Ra

x π
∗(a |x)|+ γ

∑
x′∈X

∑
a∈A

|Pa
x(x

′)π(a |x)− Pa
x(x

′)π∗(a |x)|

}

= sup
x∈X

{∑
a∈A

|Ra
x π(a |x)−Ra

x π
∗(a |x)|+ γ

∑
x′∈X

∑
a∈A

Pa
x(x

′) |π(a |x)− π∗(a |x)|

}

≤ sup
x∈X

{
(2Rmax + γ)

∑
a∈A

|π(a |x)− π∗(a |x)|

}

= (2Rmax + γ) sup
x∈X

{∑
a∈A

|π(a |x)− π∗(a |x)|

}
,
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from which we can see that the desired condition holds with C = 2Rmax + γ.

6.3 Discussion and future work

In this chapter, we discuss a framework of auxiliary Markov decision processes, whose

value functions correspond to the state similarity metrics discussed in this thesis. This has

produced novel distances, and illustrates the relationships between the various metrics.

One direction for future work is investigating the metrics produced for various cou-

plings. In a given auxiliary setting, the MDP produced is uniquely determined by the

choice of the transition coupling λ. In this chapter, we have exclusively considered the

optimal and independent couplings, which produce metrics which use the Kantorovich

metric and Łukaszyk–Karmowski distance respectively. These can be seen as two ex-

tremes, and one may find that more complex couplings may be able to interpolate be-

tween the two.
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Chapter 7

Conclusion

In this thesis we have considered many aspects of state similarity metrics in reinforcement

learning.

We firstly introduced the MICo distance, a state similarity metric inspired by bisimu-

lation which can be computed efficiently from samples. We proved that it satisfied desir-

able properties subsection 3.2.3, and demonstrated that it can be learned through a loss

in deep learning settings. We then present empirical results, showing that representation

learning using the MICo distance is effective for large-scale settings.

Next, we turned from the problem of learning behavioural metrics on Markov decision

processes to instead learning behavioural kernels on Markov decision processes. From

these, we leveraged the equivalence of kernels and metrics of negative type to recover a

new distance, the kernel similarity metric. We then proved its equivalence to the reduced

MICo distance from the previous paragraph, which gave us new theoretical properties

and insights.

Next, we take a distributional perspective on the previous chapters and literature, and

consider what happens when deterministic reward assumptions are dropped. We intro-

duced new behavioural metrics constructed using suitable modification to the original

definitions, and showed that using the same update schemes in general reward settings
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we obtain these new metrics. We then proved various properties of these metrics, and

related them to recent concepts in distributional reinforcement learning.

Finally, we present a unifying framework of auxiliary Markov decision processes,

and how state similarity metrics can be extracted as the value functions of these MDPS.

Through this perspective, all metrics considered thus far, as well as a number of others,

were shown to arise as value functions for various MDPs. Moreover, we used this frame-

work to prove that all of these metrics satisfy convergence under changing policies.

For each of these topics, we have provided fruitful areas for future research (refer to

section 3.5, section 4.4, section 5.2, and section 6.3 respectively).
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Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on re-

inforcement learning. In International Conference on Machine Learning, pages 449–458.

PMLR, 2017.

Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement Learn-

ing. MIT Press, 2022. http://www.distributional-rl.org.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena Scientific, Bel-

mont, MA, 1996.

70

http://dx.doi.org/10.2307/1990404
http://eudml.org/doc/213289
http://eudml.org/doc/213289
http://www.distributional-rl.org


R. Blute, J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov

processes. In Proceedings of the Twelfth IEEE Symposium On Logic In Computer Science,

Warsaw, Poland., 1997.

Pablo Samuel Castro. Scalable methods for computing state similarity in determinis-

tic Markov decision processes. In The Thirty-Fourth AAAI Conference on Artificial In-

telligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence

Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial

Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 10069–10076.

AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/article/

view/6564.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G.

Bellemare. Dopamine: A Research Framework for Deep Reinforcement Learning. 2018.

URL http://arxiv.org/abs/1812.06110.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico:

Learning improved representations via sampling-based state similarity for Markov de-

cision processes. In Advances in Neural Information Processing Systems (NeurIPS 2021),

2021. URL https://arxiv.org/abs/2106.08229.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Ad-

vances in Neural Information Processing Systems (NIPS), 2013.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks
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